單因變量方差分析

單因變量方差分析

ID:14483248

大?。?44.29 KB

頁數(shù):13頁

時間:2018-07-29

單因變量方差分析_第1頁
單因變量方差分析_第2頁
單因變量方差分析_第3頁
單因變量方差分析_第4頁
單因變量方差分析_第5頁
資源描述:

《單因變量方差分析》由會員上傳分享,免費在線閱讀,更多相關(guān)內(nèi)容在行業(yè)資料-天天文庫。

1、方差分析方差分析模型本身就是線性模型的一個特例,一個帶著很多啞變量的線性模型,因此,所有關(guān)于普通線性回歸的理論方法,對方差分析統(tǒng)統(tǒng)適用。與回歸分析不同,方差分析需要分類的自變量,且應變量或者協(xié)變量必須是連續(xù)變量。方差分析最初是用來檢驗多個獨立正態(tài)總體,在方差齊性的前提下,總體均值間的差異是否具有統(tǒng)計意義的一種方法。而今對多個正態(tài)總體在方差不齊時,也有方法對總體間的差異進行顯著性檢驗。因此,只要滿足多個總體間的獨立性和正態(tài)性,方差分析就可以用來探討多個不同實驗條件或者處理方法對實驗結(jié)果有無影響。單因變量單因素方差分析為了研究三種不同的鉛球教學方法的效果,將某年級三個班中,同齡的各種運動

2、能力基本相同的男生隨機分成三組,分別按三種不同方法教學,三個月后,以同樣的測試測得各組的成績,見數(shù)據(jù);試問三種教學方法有無區(qū)別?數(shù)據(jù)格式如上所見;分別有三種教學方式,分為三組,三種方法的觀測值分別為11、15、13;其數(shù)據(jù)的描述性統(tǒng)計見下表。1、描述性統(tǒng)計2、樣本數(shù)據(jù)正態(tài)性檢驗和方差齊性檢驗Analyze-àdiscriptivestatisticsàexplore按因子水平分組:即按照三種教學方法分為三組。這里levene檢驗方差齊性,無:代表不進行方差齊性檢驗,為轉(zhuǎn)換:代表不對數(shù)據(jù)進行處理直接進行方差齊性檢驗。3、正態(tài)性檢驗的原假設:樣本服從正態(tài)分布;方差齊性檢驗原假設:三個樣本

3、方差齊性;通過檢驗我們看到,正態(tài)檢驗和方差齊性檢驗的檢驗概率值SIG.都是大于0.05,那么我們就可以認為三個方法的樣本集正態(tài)且方差齊性。1、進行方差分析AnalyzeàcompareàonewayanovaOptions框:discriptive:輸出各組常用的描述性統(tǒng)計量。Homogeneityofvariancetest:用levene來檢驗組別方差的相等性,即方差齊性;方差齊性時選擇此項。這里是基于均值的levene齊性檢驗。Brown--forsythe:當方差的相等性不成立時,一般使用這個統(tǒng)計量。Welch:當不知道方差的相等與否時,可用此檢驗。PostHoc框:兩兩比較

4、;進行均值差異的多重比較;可以選擇進行各組均值兩兩比較的方法。方差齊性成立時,有14種方法;方差齊性不成立時,有4種方法可供選擇;一般認為games—howell法比較好一些。4、輸出結(jié)果:齊性檢驗與前面檢驗一致;方差分析的P值小于0.05,拒絕均值相等的原假設,認為各組均值不等。看顯著性一欄,原假設是兩兩之間均值相等,從顯著性數(shù)據(jù)看出,三種方法檢驗結(jié)果一樣,都認為方法一和方法三均值相等,與方法二不相等。教學方法Nalpha=0.05的子集12Student-Newman-Keulsa,b第三種教學方法135.6208第一種教學方法115.7600第二種教學方法157.0380顯著性

5、.6241.000TukeyHSDa,b第三種教學方法135.6208第一種教學方法115.7600第二種教學方法157.0380顯著性.8751.000Waller-Duncana,b,c第三種教學方法135.6208第一種教學方法115.7600第二種教學方法157.0380將顯示同類子集中的組均值。a.將使用調(diào)和均值樣本大小=12.793。b.組大小不相等。將使用組大小的調(diào)和均值。將不保證I類錯誤級別。c.類型1/類型2錯誤嚴重性比值=100。單因變量單因素方差分析的GLM處理單因變量單因素嵌套設計中的方差分析嵌套設計:單因素完全隨機試驗所分的各個組中,每個組再分成幾個亞組子組

6、,每個亞組中有若干觀察值。組亞組觀察值11111112113114.。。。。11n12113……………………………………………………………………….。。。1m1m11m21m3………………………1mn21………………………………………………………………………22………………………………………………………………………223………………………………………………………………………….2m……………………………………………………………………….例:為研究油菜種子包衣劑對油菜生長的影響,用ABCD四種包衣劑處理同一油菜品種的種子,每種包衣劑處理播種三盒,采用完全隨機設計,播種20天后每盒

7、測定5株苗高,數(shù)據(jù)見下;比較不同包衣劑對苗高的影響有無差異。1、正態(tài)性檢驗Analyzeàdiscriptiveàexplore檢驗結(jié)論,服從正態(tài)和方差齊性。1、方差分析AnalyzeàGLMàunivariate在GLM中可選擇實驗設計是固定效應還是隨機效應固定效應:當一個自變量的水平個數(shù),包括了該變量所有的水平個數(shù),也就是樣本水平數(shù)等于總體的水平數(shù)。隨機效應:指的是研究的自變量只包含了某部分一些水平,并非總體的所有水平都包含。在本例中,包衣劑我們只研究

當前文檔最多預覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當前文檔最多預覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學公式或PPT動畫的文件,查看預覽時可能會顯示錯亂或異常,文件下載后無此問題,請放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫負責整理代發(fā)布。如果您對本文檔版權(quán)有爭議請及時聯(lián)系客服。
3. 下載前請仔細閱讀文檔內(nèi)容,確認文檔內(nèi)容符合您的需求后進行下載,若出現(xiàn)內(nèi)容與標題不符可向本站投訴處理。
4. 下載文檔時可能由于網(wǎng)絡波動等原因無法下載或下載錯誤,付費完成后未能成功下載的用戶請聯(lián)系客服處理。