modelling, identification and stable adaptive control of continuous-time nonlinear dynamical systems using neural networks

modelling, identification and stable adaptive control of continuous-time nonlinear dynamical systems using neural networks

ID:14852566

大?。?62.70 KB

頁數(shù):5頁

時(shí)間:2018-07-30

modelling, identification and stable adaptive control of continuous-time nonlinear dynamical systems using neural networks_第1頁
modelling, identification and stable adaptive control of continuous-time nonlinear dynamical systems using neural networks_第2頁
modelling, identification and stable adaptive control of continuous-time nonlinear dynamical systems using neural networks_第3頁
modelling, identification and stable adaptive control of continuous-time nonlinear dynamical systems using neural networks_第4頁
modelling, identification and stable adaptive control of continuous-time nonlinear dynamical systems using neural networks_第5頁
資源描述:

《modelling, identification and stable adaptive control of continuous-time nonlinear dynamical systems using neural networks》由會員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫。

1、1992ACC/WA2Modelling,IdentificationandStableAdaptiveControlofContinuous-TimeNonlinearDynamicalSystemsUsingNeuralNetworksMariosMPolycarpouandPetrosA.IoannouDepartmentofElectricalEngineering-SystemsUniversityofSouthernCaliforniaLosAngeles.CA90089-2563,U.S.AAbstractTheapproximationcapabilitiesofst

2、aticsigmoidaltypenetworksandofradialbasisfunctionnetworkshavebeenstudiedbyseveralSeveralempiricalstudieshavedemonstratedthefeasibilityofem-researchgroups(seefore.g.[6J-7]).InSection2weusetheseresultsployingneuralnetworksasmodelsofnonlineardynamicalsystems.toshowthataproposedgeneralnetworkconfig

3、urationcomposedofThispaperdevelopstheappropriatemathematicaltoolsforsynthe-staticneuralnetworksanddynamicalcomponents(suchasstablefil-sizingandanalyzingstableneuralnetworkbaedidentificationandters)formsatypeofrecurrentnetworkcapableofapproximatingacontrolschemes.Feedforwardnetwokarchitecturesar

4、ecombinedlargeclamofdynamicalsystems.Moreprecisely,itisshownthatwithdynamicalelements,intheformofstablefilters,toconstructathereexistasetofweightssuchthatforagiveninput,theout-generalrecurrentnetworkconfigurationwhichisshowntobecapableputsoftherealsystemandtheproposedrecurrentneuralnetworkofapp

5、roximatingalargeclamsofdynamicalsystems.Adaptiveiden-modelremainarbitrarilycloseoverafiniteintervaloftime.InSec-tificationandcontrolschemes,basedonneuralnetworkmodels,aretion3wedevelopandanalyzeaneuralnetrkbasedidentificationdevelopedusingtheLyapunovsynthesisapproachwiththeprojectionscheme.TheL

6、yapunovsynthesisapproachisusedtoderiveadapmodificationmethod.Theseschemesareshowntoguaranteestabilitytivelawsforadjustingtheweightsofthenetwork.Theseadaptiveoftheoverallsystem,eveninthepresenceofmodellingerrors.Acru-lawsaremodifiedaccordingtotheprojectionalgorithminordertocialcharacteristicofth

7、emethodsandformulationsdevelopedinthisdealwithmodellingerrorsthatmayariseduetotheinadequacyofpaperisthegeneralityoftheresultswhichallowstheirapplicationthenetworktoapproximatetheunknownnonlinearityevenif"op-tovariousneuralnetworkm

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動(dòng)畫的文件,查看預(yù)覽時(shí)可能會顯示錯(cuò)亂或異常,文件下載后無此問題,請放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫負(fù)責(zé)整理代發(fā)布。如果您對本文檔版權(quán)有爭議請及時(shí)聯(lián)系客服。
3. 下載前請仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進(jìn)行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時(shí)可能由于網(wǎng)絡(luò)波動(dòng)等原因無法下載或下載錯(cuò)誤,付費(fèi)完成后未能成功下載的用戶請聯(lián)系客服處理。