Adaptive Backstepping Control for a Class of Nonaffine Nonlinear Systems Based Neural Networks

Adaptive Backstepping Control for a Class of Nonaffine Nonlinear Systems Based Neural Networks

ID:40706503

大?。?99.64 KB

頁數(shù):5頁

時間:2019-08-06

Adaptive Backstepping Control for a Class of Nonaffine Nonlinear Systems Based Neural Networks_第1頁
Adaptive Backstepping Control for a Class of Nonaffine Nonlinear Systems Based Neural Networks_第2頁
Adaptive Backstepping Control for a Class of Nonaffine Nonlinear Systems Based Neural Networks_第3頁
Adaptive Backstepping Control for a Class of Nonaffine Nonlinear Systems Based Neural Networks_第4頁
Adaptive Backstepping Control for a Class of Nonaffine Nonlinear Systems Based Neural Networks_第5頁
資源描述:

《Adaptive Backstepping Control for a Class of Nonaffine Nonlinear Systems Based Neural Networks》由會員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫。

1、SecondInternationalSymposiumonIntelligentInformationTechnologyApplicationAdaptiveBacksteppingControlforaClassofNonaffineNonlinearSystemsBasedNeuralNetworksJianqingMin,ZibinXu,YingguoFangCollegeofBiologyandEnvironmentEngineering,ZhejiangShurenUniversity,Hangzhou,

2、ZheJiang,310015,Chinaminjq@sina.com,hzxuzibin@gmail.comAbstractInthispaper,theproblemofdesigninganadaptiveneuralnetworkscontrollerisstudiedaimingataclassofAimingataclassofnonaffinenonlinearsystemwithnonaffinenonlinearsystemwithuncertainties,andauncertainties,ana

3、daptivebacksteppingneuralcontrollersimulationexampleispresentedtodemonstratethedesignispresented.Byapplyingbacksteppingdesigneffectivenessoftheproposedcontroldesign.strategyandonlineapproachingnonlinearitywithfullytunedradialbasisfunction(RBF)neuralnetworks,the2

4、.ProblemformulationadaptivetuningrulesarederivedfromtheLyapunovstabilitytheory.AnonlineartrackingdifferentiatorisConsidertheuncertainnonaffinenonlinearsysteminintroducedtodealwiththeproblemofextremelytheformofexpandedoperationquantityofbacksteppingmethod.Thedeve

5、lopedcontrolschemeguaranteesthatallthesignals?x&i=fi(Xi)+gi(Xi)xi+1(1≤i

6、i=[x1,x2L,xi]∈R;u∈Risthecontrolinput;fi(Xi)1.Introductionandgi(Xi)areunknownsmoothfunctions,andcannotbeexpressedaslinearizationform.ThestudyonuncertainnonlinearsystemsadaptiveTheaimistodesignacontrollerthatcaneliminatethecontrolhasattractedwideattentionandsomeim

7、portanteffectofunexpectedfactors,sothatthesystemoutputcanachievementswereobtainedduringtherecentyears[1-6],trackthedesiredcontroloutputanditcanbeensuredallinparticular,thenonlinearsystemscontrolbasedonthesignalsoftheclosed-loopsystemareuniformlyneuralnetworksiso

8、neoftheactiveresearchareas.ultimatelybounded.However,themajorityofresearchresultsfocusonaffineBeforethemainresultsaregiven,theassumptionsandsystemsratherthannonaffine

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動畫的文件,查看預(yù)覽時可能會顯示錯亂或異常,文件下載后無此問題,請放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫負(fù)責(zé)整理代發(fā)布。如果您對本文檔版權(quán)有爭議請及時聯(lián)系客服。
3. 下載前請仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進(jìn)行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時可能由于網(wǎng)絡(luò)波動等原因無法下載或下載錯誤,付費(fèi)完成后未能成功下載的用戶請聯(lián)系客服處理。