prml筆記-notes on pattern recognition and machine learning

prml筆記-notes on pattern recognition and machine learning

ID:15568246

大?。?59.65 KB

頁數(shù):77頁

時間:2018-08-04

prml筆記-notes on pattern recognition and machine learning_第1頁
prml筆記-notes on pattern recognition and machine learning_第2頁
prml筆記-notes on pattern recognition and machine learning_第3頁
prml筆記-notes on pattern recognition and machine learning_第4頁
prml筆記-notes on pattern recognition and machine learning_第5頁
資源描述:

《prml筆記-notes on pattern recognition and machine learning》由會員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫。

1、PRML筆記NotesonPatternRecognitionandMachineLearning(Bishop)Version1.0①JianXiao目錄Checklist.....................................................................................................2Chapter1Introduction................................................................................4Ch

2、apter2ProbabilityDistribution............................................................10..................................................14Chapter3LinearModelsforRegression..............................................19Chapter4LinearModelsforClassificationChapter5NeuralNetworks.........

3、.............................................................26Chapter6Kernelmethods........................................................................33Chapter7SparseKernelMachine............................................................39Chapter8GraphicalModels......................

4、...............................................47Chapter9MixtureModelsandEM..........................................................53Chapter10ApproximateInference...........................................................58Chapter11SamplingMethod............................................

5、.......................63Chapter12ContinuousLatentVariables..................................................68Chapter13SequentialData......................................................................72Chapter14CombiningModels..............................................................

6、...74①iamxiaojian@gmail.comChecklistFrequentist-Bayesian對峙構(gòu)成的主要內(nèi)容Frequentist版本Bayesian版本解模型所用的方法LinearbasisfunctionBayesianlinearbasisfunction前者和后者皆有closed-formregressionregressionsolutionLogisticregressionBayesianlogitsticregression前者牛頓迭代(IRLS),后者LaplaceapproximationNeuralnetwork(forBayesia

7、nNeuralnetwork(for前者gradientdecent,后者regression,classification)regression,classification)LaplaceapproximationSVM(forregression,RVM(forregression,前者解二次規(guī)劃,后者迭代、classification)classification)LaplaceapproximationGaussianmixturemodelBayesianGaussianmixt

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動畫的文件,查看預(yù)覽時可能會顯示錯亂或異常,文件下載后無此問題,請放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫負(fù)責(zé)整理代發(fā)布。如果您對本文檔版權(quán)有爭議請及時聯(lián)系客服。
3. 下載前請仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進(jìn)行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時可能由于網(wǎng)絡(luò)波動等原因無法下載或下載錯誤,付費(fèi)完成后未能成功下載的用戶請聯(lián)系客服處理。