Pattern Recognition and Machine Learning (Book Part 2).pdf

Pattern Recognition and Machine Learning (Book Part 2).pdf

ID:34974474

大?。?.75 MB

頁數(shù):374頁

時間:2019-03-15

Pattern Recognition and Machine Learning (Book Part 2).pdf_第1頁
Pattern Recognition and Machine Learning (Book Part 2).pdf_第2頁
Pattern Recognition and Machine Learning (Book Part 2).pdf_第3頁
Pattern Recognition and Machine Learning (Book Part 2).pdf_第4頁
Pattern Recognition and Machine Learning (Book Part 2).pdf_第5頁
資源描述:

《Pattern Recognition and Machine Learning (Book Part 2).pdf》由會員上傳分享,免費在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫。

1、8GraphicalModelsProbabilitiesplayacentralroleinmodernpatternrecognition.WehaveseeninChapter1thatprobabilitytheorycanbeexpressedintermsoftwosimpleequationscorrespondingtothesumruleandtheproductrule.Alloftheprobabilisticinfer-enceandlearningmanipulationsdisc

2、ussedinthisbook,nomatterhowcomplex,amounttorepeatedapplicationofthesetwoequations.Wecouldthereforeproceedtoformulateandsolvecomplicatedprobabilisticmodelspurelybyalgebraicma-nipulation.However,weshall?ndithighlyadvantageoustoaugmenttheanalysisusingdiagramm

3、aticrepresentationsofprobabilitydistributions,calledprobabilisticgraphicalmodels.Theseofferseveralusefulproperties:1.Theyprovideasimplewaytovisualizethestructureofaprobabilisticmodelandcanbeusedtodesignandmotivatenewmodels.2.Insightsintothepropertiesofthem

4、odel,includingconditionalindependenceproperties,canbeobtainedbyinspectionofthegraph.3593608.GRAPHICALMODELS3.Complexcomputations,requiredtoperforminferenceandlearninginsophis-ticatedmodels,canbeexpressedintermsofgraphicalmanipulations,inwhichunderlyingmath

5、ematicalexpressionsarecarriedalongimplicitly.Agraphcomprisesnodes(alsocalledvertices)connectedbylinks(alsoknownasedgesorarcs).Inaprobabilisticgraphicalmodel,eachnoderepresentsarandomvariable(orgroupofrandomvariables),andthelinksexpressprobabilisticrelation

6、-shipsbetweenthesevariables.Thegraphthencapturesthewayinwhichthejointdistributionoveralloftherandomvariablescanbedecomposedintoaproductoffactorseachdependingonlyonasubsetofthevariables.Weshallbeginbydis-cussingBayesiannetworks,alsoknownasdirectedgraphicalm

7、odels,inwhichthelinksofthegraphshaveaparticulardirectionalityindicatedbyarrows.TheothermajorclassofgraphicalmodelsareMarkovrandom?elds,alsoknownasundirectedgraphicalmodels,inwhichthelinksdonotcarryarrowsandhavenodirectionalsigni?cance.Directedgraphsareusef

8、ulforexpressingcausalrelationshipsbetweenrandomvariables,whereasundirectedgraphsarebettersuitedtoexpressingsoftcon-straintsbetweenrandomvariables.Forthepurposesofsolvinginferenceproblems,itisoftenconvenientto

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動畫的文件,查看預(yù)覽時可能會顯示錯亂或異常,文件下載后無此問題,請放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫負(fù)責(zé)整理代發(fā)布。如果您對本文檔版權(quán)有爭議請及時聯(lián)系客服。
3. 下載前請仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時可能由于網(wǎng)絡(luò)波動等原因無法下載或下載錯誤,付費完成后未能成功下載的用戶請聯(lián)系客服處理。