11、率e的取值范圍.5.已知橢圓(a>b>0)的離心率,過點(diǎn)A(0,-b)和B(a,0)的直線與原點(diǎn)的距離為(1)求橢圓的方程(2)已知定點(diǎn)E(-1,0),若直線y=kx+2(k≠0)與橢圓交于CD兩點(diǎn)問:是否存在k的值,使以CD為直徑的圓過E點(diǎn)?請(qǐng)說明理由6.在直角坐標(biāo)平面中,的兩個(gè)頂點(diǎn)的坐標(biāo)分別為,,平面內(nèi)兩點(diǎn)同時(shí)滿足下列條件:①;②;③∥(1)求的頂點(diǎn)的軌跡方程;(2)過點(diǎn)的直線與(1)中軌跡交于兩點(diǎn),求的取值范圍7.設(shè),為直角坐標(biāo)平面內(nèi)x軸.y軸正方向上的單位向量,若,且(Ⅰ)求動(dòng)點(diǎn)M(x,y)
12、的軌跡C的方程;(Ⅱ)設(shè)曲線C上兩點(diǎn)A.B,滿足(1)直線AB過點(diǎn)(0,3),(2)若,則OAPB為矩形,試求AB方程.8.已知拋物線C:的焦點(diǎn)為原點(diǎn),C的準(zhǔn)線與直線的交點(diǎn)M在x軸上,與C交于不同的兩點(diǎn)A、B,線段AB的垂直平分線交x軸于點(diǎn)N(p,0).(Ⅰ)求拋物線C的方程;(Ⅱ)求實(shí)數(shù)p的取值范圍;(Ⅲ)若C的焦點(diǎn)和準(zhǔn)線為橢圓Q的一個(gè)焦點(diǎn)和一條準(zhǔn)線,試求Q的短軸的端點(diǎn)的軌跡方程.9.如圖,橢圓的中心在原點(diǎn),長軸AA1在x軸上.以A、A1為焦點(diǎn)的雙曲線交橢圓于C、D、D1、C1四點(diǎn),且
13、CD
14、=
15、
16、AA1
17、.橢圓的一條弦AC交雙曲線于E,設(shè),當(dāng)時(shí),求雙曲線的離心率e的取值范圍.10.已知三角形ABC的三個(gè)頂點(diǎn)均在橢圓上,且點(diǎn)A是橢圓短軸的一個(gè)端點(diǎn)(點(diǎn)A在y軸正半軸上).若三角形ABC的重心是橢圓的右焦點(diǎn),試求直線BC的方程;若角A為,AD垂直BC于D,試求點(diǎn)D的軌跡方程.11.如圖,過拋物線的對(duì)稱軸上任一點(diǎn)作直線與拋物線交于兩點(diǎn),點(diǎn)是點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn).(1)設(shè)點(diǎn)分有向線段所成的比為,證明:;(2)設(shè)直線的方程是,過兩點(diǎn)的圓與拋物線在點(diǎn)處有共同的切線,求圓的方程.12.已知?jiǎng)狱c(diǎn)P(p,-1),
18、Q(p,),過Q作斜率為的直線l,PQ中點(diǎn)M的軌跡為曲線C.(1)證明:l經(jīng)過一個(gè)定點(diǎn)而且與曲線C一定有兩個(gè)公共點(diǎn);(2)若(1)中的其中一個(gè)公共點(diǎn)為A,證明:AP是曲線C的切線;(3)設(shè)直線AP的傾斜角為,AP與l的夾角為,證明:或是定值.13.在平面直角坐標(biāo)系內(nèi)有兩個(gè)定點(diǎn)和動(dòng)點(diǎn)P,坐標(biāo)分別為、,動(dòng)點(diǎn)滿足,動(dòng)點(diǎn)的軌跡為曲線,曲線關(guān)于直線的對(duì)稱曲線為曲線,直線與曲線交于A、B兩點(diǎn),O是坐標(biāo)原點(diǎn),△ABO的面積為,(1)求曲線C的方程;(2)求的值。14.已知雙曲線的左右兩個(gè)焦點(diǎn)分別為,點(diǎn)P在雙曲線右
19、支上.(Ⅰ)若當(dāng)點(diǎn)P的坐標(biāo)為時(shí),,求雙曲線的方程;(Ⅱ)若,求雙曲線離心率的最值,并寫出此時(shí)雙曲線的漸進(jìn)線方程.15.若F、F為雙曲線的左右焦點(diǎn),O為坐標(biāo)原點(diǎn),P在雙曲線的左支上,點(diǎn)M在右準(zhǔn)線上,且滿足;.(1)求該雙曲線的離心率;(2)若該雙曲線過N(2,),求雙曲線的方程;(3)若過N(2,)的雙曲線的虛軸端點(diǎn)分別為B、B(B在y軸正半軸上),點(diǎn)A、B在雙曲線上,且時(shí),直線AB的方程.16.以O(shè)為原點(diǎn),所在直線為軸,建立如所示的坐標(biāo)系。設(shè),點(diǎn)F的坐標(biāo)為,,點(diǎn)G的坐標(biāo)為。(1)求關(guān)于的函數(shù)的表達(dá)式
20、,判斷函數(shù)的單調(diào)性,并證明你的判斷;(2)設(shè)ΔOFG的面積,若以O(shè)為中心,F(xiàn)為焦點(diǎn)的橢圓經(jīng)過點(diǎn)G,求當(dāng)取最小值時(shí)橢圓的方程;(3)在(2)的條件下,若點(diǎn)P的坐標(biāo)為,C、D是橢圓上的兩點(diǎn),且,求實(shí)數(shù)的取值范圍。17.已知點(diǎn)C為圓的圓心,點(diǎn)A(1,0),P是圓上的動(dòng)點(diǎn),點(diǎn)Q在圓的半徑CP上,且(Ⅰ)當(dāng)點(diǎn)P在圓上運(yùn)動(dòng)時(shí),求點(diǎn)Q的軌跡方程;(Ⅱ)若直線與(Ⅰ)中所求點(diǎn)Q的軌跡交于不同兩點(diǎn)F,H,O是坐標(biāo)原點(diǎn),且,求△FOH的面積的取值范圍。18.如圖所示,O是線段AB的中點(diǎn),