基于非下采樣shearlet梯度方向直方圖和稀疏表示的脫機(jī)手寫(xiě)數(shù)字識(shí)別

基于非下采樣shearlet梯度方向直方圖和稀疏表示的脫機(jī)手寫(xiě)數(shù)字識(shí)別

ID:21042570

大?。?64.03 KB

頁(yè)數(shù):9頁(yè)

時(shí)間:2018-10-19

基于非下采樣shearlet梯度方向直方圖和稀疏表示的脫機(jī)手寫(xiě)數(shù)字識(shí)別_第1頁(yè)
基于非下采樣shearlet梯度方向直方圖和稀疏表示的脫機(jī)手寫(xiě)數(shù)字識(shí)別_第2頁(yè)
基于非下采樣shearlet梯度方向直方圖和稀疏表示的脫機(jī)手寫(xiě)數(shù)字識(shí)別_第3頁(yè)
基于非下采樣shearlet梯度方向直方圖和稀疏表示的脫機(jī)手寫(xiě)數(shù)字識(shí)別_第4頁(yè)
基于非下采樣shearlet梯度方向直方圖和稀疏表示的脫機(jī)手寫(xiě)數(shù)字識(shí)別_第5頁(yè)
資源描述:

《基于非下采樣shearlet梯度方向直方圖和稀疏表示的脫機(jī)手寫(xiě)數(shù)字識(shí)別》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫(kù)。

1、基于非下采樣Shearlet梯度方向直方圖和稀疏表示的脫機(jī)手寫(xiě)數(shù)字識(shí)別摘要:為了更有效的提高脫機(jī)手寫(xiě)體數(shù)字識(shí)別的性能和識(shí)別率,提山基于非下采樣shearlet梯度方向直方圖特征和稀疏表示的脫機(jī)手寫(xiě)字符識(shí)別方法。首先對(duì)字符圖像進(jìn)行非下采樣Shearlet變換,得到低頻子帶圖像和高頻子帶圖像,然后將子圖劃分為若干矩形子塊,分別統(tǒng)計(jì)子塊區(qū)域的梯度方向直方圖分布,將分塊直方圖串接起來(lái)形成非下采樣梯度方向直方閣特征(HNSCOG),最后用HNSCOH特征構(gòu)建超完備字典,通過(guò)稀疏表示重構(gòu)最小誤差實(shí)現(xiàn)字符圖像分類(lèi)。在MN

2、IST和USPS數(shù)據(jù)集上測(cè)試,與DDH+SVM方法、SparseLS-SVM方法、sub-sampling+SVM方法和MTC+linear-SVM方法的識(shí)別率比較,實(shí)驗(yàn)結(jié)果表明,HNSCOG和稀疏表示的方法可以較大地提高脫機(jī)手寫(xiě)數(shù)字的識(shí)別率。I詞:脫機(jī)手寫(xiě)數(shù)字識(shí)別,非下采樣Shearlet變換,梯度方向直方圖,稀疏表示Offlinehandwrittendigitcharacterrecognitionbasedonhistogramsofnonsubsampledshearletorientedgrad

3、ientsandsparserepresentationAbstract:Inordertoimproverecognitionrateofhandwrittendigitcharacterefficiently,anovelmethodofhandwrittennumeralscharacterrecognitionbasedonhistogramsofnonsubsampledshearletorientedgradientsfeatures(HNSCOG)andsparserepresentation

4、waspresentedinthispaper.Firstly,thenonsubsampledshearlettransform(NSST)wasutilizedtodecomposethecharacterimagesonvariousscalesandindifferentdirections,andthelowfrequencysub-bandandbandpasssub-bandcoefficientswereobtained.Then,sub-imagesofdigitalcharacterw

5、asdividedintogridsofblocksandcellstoextractHOGfeatures,andthehistogramofeachunitwascomputedandconcatenatedasHNSCOGfeaturesdescriptor.Finally,HNSCOGfeatureswerecombinedtoformanover-completedictionarywhichwasemployedbysparserepresentationtoclassifythehand

6、writtennumeralscharacter.Tocomparetheperformanceoftheproposedmethod,severalalternativealgorithmsforhandwrittennumberrecognitionhadbeenconsidered,forinstancedistancedistributionhistogram(DDH)plusSVMmethod,SparseLS-SVMmethod,sub-samplingplusSVMmethodandMTCp

7、luslinear-SVMmethod.Inordertoevaluatethesetechniques,acollectionofwellknownstandarddatabaseshadbeenused:MNISTdigitdatasetandUSPSdigitdataset.Theexperimentalresultsindicatethatthehandwrittennumeralcharacterrecognitionaccuracycanbeimprovedgreatly.Keywords:ha

8、ndwrittencharacterrecognition,nonsubsampledshearlettransform,histogramsoforientedgradients,sparserepresentation1引言脫機(jī)手寫(xiě)數(shù)字識(shí)別是光學(xué)字符識(shí)別領(lǐng)域一個(gè)具有挑戰(zhàn)性的難題,有廣闊的實(shí)際應(yīng)用,如郵政信件分揀、表單數(shù)據(jù)處理等。聯(lián)機(jī)手寫(xiě)數(shù)字識(shí)別已經(jīng)取得較好的效果,然而脫機(jī)手寫(xiě)數(shù)字識(shí)別的精度離工程實(shí)踐應(yīng)川還存在

當(dāng)前文檔最多預(yù)覽五頁(yè),下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁(yè),下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動(dòng)畫(huà)的文件,查看預(yù)覽時(shí)可能會(huì)顯示錯(cuò)亂或異常,文件下載后無(wú)此問(wèn)題,請(qǐng)放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫(kù)負(fù)責(zé)整理代發(fā)布。如果您對(duì)本文檔版權(quán)有爭(zhēng)議請(qǐng)及時(shí)聯(lián)系客服。
3. 下載前請(qǐng)仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進(jìn)行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時(shí)可能由于網(wǎng)絡(luò)波動(dòng)等原因無(wú)法下載或下載錯(cuò)誤,付費(fèi)完成后未能成功下載的用戶請(qǐng)聯(lián)系客服處理。