初二數(shù)學動點問題-初二數(shù)學動點問題分析-初二數(shù)學動點問題總結(jié)

ID:21365487

大小:470.00 KB

頁數(shù):13頁

時間:2018-10-21

初二數(shù)學動點問題-初二數(shù)學動點問題分析-初二數(shù)學動點問題總結(jié)_第1頁
初二數(shù)學動點問題-初二數(shù)學動點問題分析-初二數(shù)學動點問題總結(jié)_第2頁
初二數(shù)學動點問題-初二數(shù)學動點問題分析-初二數(shù)學動點問題總結(jié)_第3頁
初二數(shù)學動點問題-初二數(shù)學動點問題分析-初二數(shù)學動點問題總結(jié)_第4頁
初二數(shù)學動點問題-初二數(shù)學動點問題分析-初二數(shù)學動點問題總結(jié)_第5頁
資源描述:

《初二數(shù)學動點問題-初二數(shù)學動點問題分析-初二數(shù)學動點問題總結(jié)》由會員上傳分享,免費在線閱讀,更多相關(guān)內(nèi)容在教育資源-天天文庫。

1、初二動點問題解題技巧所謂“動點型問題”是指題設(shè)圖形中存在一個或多個動點,它們在線段、射線或弧線上運動的一類開放性題目.解決這類問題的關(guān)鍵是動中求靜,靈活運用有關(guān)數(shù)學知識解決問題.關(guān)鍵:動中求靜.數(shù)學思想:分類思想函數(shù)思想方程思想數(shù)形結(jié)合思想轉(zhuǎn)化思想注重對幾何圖形運動變化能力的考查。從變換的角度和運動變化來研究三角形、四邊形、函數(shù)圖像等圖形,通過“對稱、動點的運動”等研究手段和方法,來探索與發(fā)現(xiàn)圖形性質(zhì)及圖形變化,在解題過程中滲透空間觀念和合情推理。選擇基本的幾何圖形,讓學生經(jīng)歷探索的過程,以能力立意,考查學生的自主探究能力,促進培養(yǎng)學

2、生解決問題的能力.圖形在動點的運動過程中觀察圖形的變化情況,需要理解圖形在不同位置的情況,才能做好計算推理的過程。在變化中找到不變的性質(zhì)是解決數(shù)學“動點”探究題的基本思路,這也是動態(tài)幾何數(shù)學問題中最核心的數(shù)學本質(zhì)。二期課改后數(shù)學卷中的數(shù)學壓軸性題正逐步轉(zhuǎn)向數(shù)形結(jié)合、動態(tài)幾何、動手操作、實驗探究等方向發(fā)展.這些壓軸題題型繁多、題意創(chuàng)新,目的是考察學生的分析問題、解決問題的能力,內(nèi)容包括空間觀念、應用意識、推理能力等.從數(shù)學思想的層面上講:(1)運動觀點;(2)方程思想;(3)數(shù)形結(jié)合思想;(4)分類思想;(5)轉(zhuǎn)化思想等.研究歷年來各區(qū)

3、的壓軸性試題,就能找到今年中考數(shù)學試題的熱點的形成和命題的動向,它有利于我們教師在教學中研究對策,把握方向.只的這樣,才能更好的培養(yǎng)學生解題素養(yǎng),在素質(zhì)教育的背景下更明確地體現(xiàn)課程標準的導向.本文擬就壓軸題的題型背景和區(qū)分度測量點的存在性和區(qū)分度小題處理手法提出自己的觀點.專題一:建立動點問題的函數(shù)解析式函數(shù)揭示了運動變化過程中量與量之間的變化規(guī)律,是初中數(shù)學的重要內(nèi)容.動點問題反映的是一種函數(shù)思想,由于某一個點或某圖形的有條件地運動變化,引起未知量與已知量間的一種變化關(guān)系,這種變化關(guān)系就是動點問題中的函數(shù)關(guān)系.那么,我們怎樣建立這種

4、函數(shù)解析式呢?下面結(jié)合中考試題舉例分析.一、應用勾股定理建立函數(shù)解析式。二、應用比例式建立函數(shù)解析式。三、應用求圖形面積的方法建立函數(shù)關(guān)系式。專題二:動態(tài)幾何型壓軸題動態(tài)幾何特點----問題背景是特殊圖形,考查問題也是特殊圖形,所以要把握好一般與特殊的關(guān)系;分析過程中,特別要關(guān)注圖形的特性(特殊角、特殊圖形的性質(zhì)、圖形的特殊位置。)動點問題一直是中考熱點,近幾年考查探究運動中的特殊性:等腰三角形、直角三角形、相似三角形、平行四邊形、梯形、特殊角或其三角函數(shù)、線段或面積的最值。下面就此問題的常見題型作簡單介紹,解題方法、關(guān)鍵給以點撥。一

5、、以動態(tài)幾何為主線的壓軸題。(一)點動問題。(二)線動問題。(三)面動問題。二、解決動態(tài)幾何問題的常見方法有:1、特殊探路,一般推證。2、動手實踐,操作確認。3、建立聯(lián)系,計算說明。三、專題二總結(jié),本大類習題的共性:1.代數(shù)、幾何的高度綜合(數(shù)形結(jié)合);著力于數(shù)學本質(zhì)及核心內(nèi)容的考查;四大數(shù)學思想:數(shù)學結(jié)合、分類討論、方程、函數(shù).2.以形為載體,研究數(shù)量關(guān)系;通過設(shè)、表、列獲得函數(shù)關(guān)系式;研究特殊情況下的函數(shù)值。專題三:雙動點問題點動、線動、形動構(gòu)成的問題稱之為動態(tài)幾何問題.它主要以幾何圖形為載體,運動變化為主線,集多個知識點為一體,

6、集多種解題思想于一題.這類題綜合性強,能力要求高,它能全面的考查學生的實踐操作能力,空間想象能力以及分析問題和解決問題的能力.其中以靈活多變而著稱的雙動點問題更成為今年中考試題的熱點,現(xiàn)采擷幾例加以分類淺析,供讀者欣賞.1以雙動點為載體,探求函數(shù)圖象問題。2以雙動點為載體,探求結(jié)論開放性問題。3以雙動點為載體,探求存在性問題。4以雙動點為載體,探求函數(shù)最值問題。雙動點問題的動態(tài)問題是近幾年來中考數(shù)學的熱點題型.這類試題信息量大,對同學們獲取信息和處理信息的能力要求較高;解題時需要用運動和變化的眼光去觀察和研究問題,挖掘運動、變化的全過

7、程,并特別關(guān)注運動與變化中的不變量、不變關(guān)系或特殊關(guān)系,動中取靜,靜中求動。專題四:函數(shù)中因動點產(chǎn)生的相似三角形問題專題五:以圓為載體的動點問題動點問題是初中數(shù)學的一個難點,中考經(jīng)??疾?,有一類動點問題,題中未說到圓,卻與圓有關(guān),只要巧妙地構(gòu)造圓,以圓為載體,利用圓的有關(guān)性質(zhì),問題便會迎刃而解;此類問題方法巧妙,耐人尋味。例1.如圖,已知在矩形ABCD中,AD=8,CD=4,點E從點D出發(fā),沿線段DA以每秒1個單位長的速度向點A方向移動,同時點F從點C出發(fā),沿射線CD方向以每秒2個單位長的速度移動,當B,E,F(xiàn)三點共線時,兩點同時停止

8、運動.設(shè)點E移動的時間為t(秒).(1)求當t為何值時,兩點同時停止運動;(2)設(shè)四邊形BCFE的面積為S,求S與t之間的函數(shù)關(guān)系式,并寫出t的取值范圍;(3)求當t為何值時,以E,F(xiàn),C三點為頂點的三角形是等腰三角形;

當前文檔最多預覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當前文檔最多預覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學公式或PPT動畫的文件,查看預覽時可能會顯示錯亂或異常,文件下載后無此問題,請放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫負責整理代發(fā)布。如果您對本文檔版權(quán)有爭議請及時聯(lián)系客服。
3. 下載前請仔細閱讀文檔內(nèi)容,確認文檔內(nèi)容符合您的需求后進行下載,若出現(xiàn)內(nèi)容與標題不符可向本站投訴處理。
4. 下載文檔時可能由于網(wǎng)絡(luò)波動等原因無法下載或下載錯誤,付費完成后未能成功下載的用戶請聯(lián)系客服處理。
关闭