資源描述:
《定積分的概念和性質(zhì)(》由會員上傳分享,免費在線閱讀,更多相關(guān)內(nèi)容在應(yīng)用文檔-天天文庫。
1、第五章定積分Chapter5DefiniteIntegrals5.1定積分的概念和性質(zhì)(ConceptofDefiniteIntegralanditsProperties)一、定積分問題舉例(ExamplesofDefiniteIntegral)設(shè)在區(qū)間上非負、連續(xù),由,,以及曲線所圍成的圖形稱為曲邊梯形,其中曲線弧稱為曲邊。Letbecontinuousandnonnegativeontheclosedinterval.Thentheregionboundedbythegraphof,the-axis,theverticallines,andiscall
2、edthetrapezoidwithcurvededge.黎曼和的定義(DefinitionofRiemannSum)設(shè)是定義在閉區(qū)間上的函數(shù),是的任意一個分割,,其中是第個小區(qū)間的長度,是第個小區(qū)間的任意一點,那么和,稱為黎曼和。Letbedefinedontheclosedinterval,andletbeanarbitrarypartitionof,,whereisthewidthofthethsubinterval.Ifisanypointinthethsubinterval,thenthesum,,IscalledaRiemannsumforth
3、epartition.二、定積分的定義(DefinitionofDefiniteIntegral)定義定積分(DefiniteIntegral)設(shè)函數(shù)在區(qū)間上有界,在中任意插入若干個分點,把區(qū)間分成個小區(qū)間:各個小區(qū)間的長度依次為,,…,。在每個小區(qū)間上任取一點,作函數(shù)與小區(qū)間長度的乘積(),并作出和。記,如果不論對怎樣分法,也不論在小區(qū)間上點怎樣取法,只要當(dāng)時,和總趨于確定的極限,這時我們稱這個極限為函數(shù)在區(qū)間上的定積分(簡稱積分),記作,即==,其中叫做被積函數(shù),叫做被積表達式,叫做積分變量,叫做積分下限,叫做積分上限,叫做積分區(qū)間。Letbeafun
4、ctionthatisdefinedontheclosedinterval.Considerapartitionoftheintervalintosubinterval(notnecessarilyofequallength)bymeansofpointsandlet.Oneachsubinterval,pickanarbitrarypoint(whichmaybeanendpoint);wecallitasamplepointfortheithsubinterval.WecallthesumaRiemannsumforcorrespondingtothe
5、partition.Ifexists,wesayisintegrableon,where.Moreover,,calleddefiniteintegral(orRiemannIntegral)offromto,isgivenby=.Theequality=meansthat,correspondingtoeach>0,thereisasuchthat6、tofintegral,theupperlimitofintegral,andtheintegralinterval.定理1可積性定理(IntegrabilityTheorem)設(shè)在區(qū)間上連續(xù),則在上可積。Theorem1Ifafunctioniscontinuousontheclosedinterval,itisintegrableon.定理2可積性定理(IntegrabilityTheorem)設(shè)在區(qū)間上有界,且只有有限個間斷點,則在區(qū)間上可積。Theorem2Ifisboundedonandifitiscontinuousthereexceptata
7、finitenumberofpoints,thenisintegrableon.三.定積分的性質(zhì)(PropertiesofDefiniteIntegrals)兩個特殊的定積分(1)如果在點有意義,則;(2)如果在上可積,則。TwoSpecialDefiniteIntegrals(1)Ifisdefinedat.Then.(2)Ifisintegrableon.Then.定積分的線性性(LinearityoftheDefiniteIntegral)設(shè)函數(shù)和在上都可積,是常數(shù),則和+都可積,并且(1)=;(2)=+;andconsequently,(3)=-.
8、Supposethatandareintegrableonandi