資源描述:
《對初中數學課堂教學的幾點反思》由會員上傳分享,免費在線閱讀,更多相關內容在學術論文-天天文庫。
1、對初中數學課堂教學的幾點反思 進入新世紀以后,我們面臨的問題很多,其中最關鍵的就是怎樣使產業(yè)升級,在這方面起重要作用是人才。究竟需要什么樣的人才呢,專家們指出需要以下四種素質的人才:第一,有新觀念;第二,能夠不斷從事技術創(chuàng)新;第三,善于經營和開拓市場;第四、有團隊精神。為此數學教學中應加強學生這四個方面能力的培養(yǎng)?! ∫弧⒃跀祵W教學中培養(yǎng)學生的新觀念、新思想 新觀念中不僅包含對事物的新認識、新思想,而且包含一個不斷學習的過程。為此作為新人才就必須學會學習,只有不斷地學習,獲取新知識更新觀念,形成新認識。在數學史上,法國大數學家笛卡爾
2、在學生時代喜歡博覽群書,認識到代數與幾何割裂的弊病,他用代數方法研究幾何的作圖問題,指出了作圖問題與求方程組的解之間的關系,通過具體問題,提出了坐標法,把幾何曲線表示成代數方程,斷言曲線方程的次數與坐標軸的選擇無關,用方程的次數對曲線加以分類,認識到了曲線的交點與方程組的解之間的關系。主張把代數與幾何相結合,把量化方法用于幾何研究的新觀點,從而創(chuàng)立解析幾何學。作為數學教師在教學中不僅要教學生學會,更應教學生會學。在不等式證明的教學中,我重點教學生遇到問題怎么分析,靈活運用比較、分析、綜合三種基本證法,同時引導學生用三角、復數、幾何等新方
3、法研究證明不等式。 例已知a>=0,b>=0,且a+b=1,求證(a+2)(a+2)+(b+2)4(b+2)>=25/2 證明這個不等式方法較多,除基本證法外,可利用二次函數的求最值、三角代換、構造直角三角形等途徑證明。若將a+b=1(a>=0,b>=0)作為平面直角坐標系內的線段,也能用解析幾何知識求證。證法如下:在平面直角坐標系內取直線段x+y=1,(0==1),(a+2)(a+2)+(b+2)(b+2)看作點(-2,-2)與線段x+y=1上的點(a,b)之間的距離的平方。由于點到一直線的距離是這點與該直線上任意一點之間的距離的
4、最小值。而d*d=(-2-2-1
5、)/2=25/2,所以(a+2)(a+2)+(b+2)(b+2)>=25/2.“授之以魚,不如授之以漁”,方法的掌握,思想的形成,才能使學生受益終生?! 《?、在數學教學中培養(yǎng)學生的創(chuàng)新能力 創(chuàng)新能力在數學教學中主要表現(xiàn)對已解決問題尋求新的解法?!皩W起于思,思源于疑”,學生探索知識的思維過程總是從問題開始,又在解決問題中得到發(fā)展和創(chuàng)新。教學過程中學生在教師創(chuàng)設的情境下,自己動手操作、動腦思考、動口表達,探索未知領域,尋找客觀真理,成為發(fā)現(xiàn)者,要讓學生自始至終地參與這一探索過程,發(fā)展學生創(chuàng)新能力。如在球的
6、體積教學中,我利用課余時間將學生分為三組,要求第一組每人做半徑為10厘米的半球;第二組每人做半徑為10厘米高10厘米圓錐;第三組每人做半徑為10厘米高10厘米圓柱。每組出一人又組成許多小組,各小組分別將圓錐放入圓柱中,然后用半球裝滿土倒入圓柱中,學生們發(fā)現(xiàn)它們之間的關系,半球的體積等于圓柱與圓錐體積之差。球的4體積公式的推導過程,集公理化思想、轉化思想、等積類比思想及割補轉換方法之大成,就是這些思想方法靈活運用的完美范例。教學中再次通過展現(xiàn)體積問題解決的思路分析,形成系統(tǒng)的條理的體積公式的推導線索,把這些思想方法明確地呈現(xiàn)在學生的眼前。
7、學 三、在數學教學中培養(yǎng)學生經營和開拓市場的能力 一切數學知識都來源于現(xiàn)實生活中,同時,現(xiàn)實生活中許多問題都需要用數學知識、數學思想方法去思考解決。比如,洗衣機按什么程序運行有利節(jié)約用水;漁場主怎樣經營既能獲得最高產量,又能實現(xiàn)可持續(xù)發(fā)展;一件好的產品設計怎樣營銷方案才能快速得到市場認可,產生良好的經濟效益。為此數學教學中應有意識地培養(yǎng)學生經營和開拓市場的能力。善于經營和開拓市場的能力在數學教學中主要體現(xiàn)為對一個數學問題或實際問題如何設計出最佳的解決方案或模型。 四、在數學教學中培養(yǎng)學生團隊精神 團隊精神就是一種相互協(xié)作、相互配
8、合的工作精神。數學教師在教學中多設計一些學生互相配合能解決的問題,增進學生協(xié)作意識,培養(yǎng)他們的團隊精神。如我又在講授球的體積公式時,課前我讓20名學生用厚0.5厘米的紙板依次做半徑為10、9.5、9……0.5厘米圓柱,列出各圓柱的體積計算公式并算出結果。又讓40名學生用厚0.25厘米的紙板依次做半徑為10、9.75、9.5……40.5、0.25厘米圓柱,列出各圓柱的體積計算公式并算出結果。課堂上我先把球的體積公式寫在黑板上,然后讓學生用兩根細鐵絲分別將兩組圓柱按大到小通過中心軸依次串連得到兩個近似半球的幾何體。讓大家比較它們的體積與半徑
9、為10厘米的半球體積,發(fā)現(xiàn)第二組比第一組的體積接近于半球的體積,如果紙板厚度變小得到的幾何體體積愈接近于半球的體積,幫助學生發(fā)現(xiàn)了球的體積公式另一證法。同時不僅向學生講教學過程中的實驗材料為什么讓大家各自準