基于內(nèi)容的圖象檢索中特征、索引及交互問(wèn)題研究

基于內(nèi)容的圖象檢索中特征、索引及交互問(wèn)題研究

ID:32042293

大小:9.17 MB

頁(yè)數(shù):155頁(yè)

時(shí)間:2019-01-30

基于內(nèi)容的圖象檢索中特征、索引及交互問(wèn)題研究_第1頁(yè)
基于內(nèi)容的圖象檢索中特征、索引及交互問(wèn)題研究_第2頁(yè)
基于內(nèi)容的圖象檢索中特征、索引及交互問(wèn)題研究_第3頁(yè)
基于內(nèi)容的圖象檢索中特征、索引及交互問(wèn)題研究_第4頁(yè)
基于內(nèi)容的圖象檢索中特征、索引及交互問(wèn)題研究_第5頁(yè)
資源描述:

《基于內(nèi)容的圖象檢索中特征、索引及交互問(wèn)題研究》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫(kù)。

1、生墮型蘭墊查盔堂熊主堂垡迨塞塑壁墾羞絲塑ABSTRACTCONTENT-BasedImageRetrieval(CBIR)HasBecomeanImportantResearchFieldinMultimediaInformationProcessinginTheseYears.InThisDissertation,SomeImportantProblemsareDiscussed,IncludingImageFEATURES,ImageINDEXING,andHumanComputerINTERACTION.So

2、meAlgorithmsarePresentedandPerformWellfortheAboveProblemsMeanwhile,aCBIRSurveyandaCBIRSystemsListareAlsoPresented.’l。HEImageStatisticsFeatllre$areEmployedWidelysinceCBIRatItsBeginning.IncludingColor,TextureandOtherFeatures,BecauseofTheirRobusmessforRoration,Sh

3、ift,andScaleChange.ColorQuantizationisanImportantProblemwithA11theColorFeatures;Hence.a(chǎn)NovelAlgorithmisDevelopedforAdaptiveColorNon.EquallyQuantization,andItPerformsWellBasedontheExperimentalResults.Meanwhile.AnotherNewFeatureisBuiltBasedonBothColorandTexture.

4、anda3DCo-occurrenceintheHSVColorSpaceOutFIerformstheTraditionalMethodsonOurDatabase.ALTHOUGHtheStatisticsFeaturesareEmployedforSoManyYears.theGap.WhichBetweenTheseLowLevelFeaturesandtheHighLevelConcepts.isStillaSeriousMaaer,andthelmageStructureFeaturesareUsefu

5、lforitSothisDissertationPresentsSeveralTechniquestoSimplifytheJSEGAlgorithmforImageSegmentationtoExtractLargeSemanticRegionsinImageforCBIR.ExperimentsShowtheAdvantageoftheNewAlgorithmovertheTraditionalJSEGAlgorithmforLargeSemanticRegionsExtraction.AnotherNovel

6、CBlRAlgorithmBasedonRunningSub.BlockswithDifrerentSimilarityWeightsisPresented.bySplittingtheEntireImageintoSub.Blocks.Color-LayoutInformationisUsedtoRetfievalImagesUndertheQueryImageFurtherMore,AtierRetrievingtheImageswiththeSameContentLocatedonDi施rentPartsof

7、theSampledImagesFromtheImageDatabase.SomePost.Processings(suchasFaceRecognition)CanBeIncorporatedtoEnhancetheCBIRSystemsforOtherApplications.THISDissertationPresentsaNovelEfficientSemanticImageClassificationAlgorithmforHigh.1evelFeatureIndexingofHigh.dimension

8、ImageFeatures.ExperimentsShowThattheAlgorithmPerforillsWell.BasedonThisTheory,Anothel"GroundtmthisBuilt.a(chǎn)ndtheImagesareCategorizedintoThreeClasses:City,LandscapeandPerson.TheExperi

當(dāng)前文檔最多預(yù)覽五頁(yè),下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁(yè),下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動(dòng)畫(huà)的文件,查看預(yù)覽時(shí)可能會(huì)顯示錯(cuò)亂或異常,文件下載后無(wú)此問(wèn)題,請(qǐng)放心下載。
2. 本文檔由用戶(hù)上傳,版權(quán)歸屬用戶(hù),天天文庫(kù)負(fù)責(zé)整理代發(fā)布。如果您對(duì)本文檔版權(quán)有爭(zhēng)議請(qǐng)及時(shí)聯(lián)系客服。
3. 下載前請(qǐng)仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進(jìn)行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時(shí)可能由于網(wǎng)絡(luò)波動(dòng)等原因無(wú)法下載或下載錯(cuò)誤,付費(fèi)完成后未能成功下載的用戶(hù)請(qǐng)聯(lián)系客服處理。