A First Course in the numerical analysis of differential equations 2ed.pdf

A First Course in the numerical analysis of differential equations 2ed.pdf

ID:34309695

大?。?35.47 KB

頁(yè)數(shù):22頁(yè)

時(shí)間:2019-03-04

A First Course in the numerical analysis of differential equations 2ed.pdf_第1頁(yè)
A First Course in the numerical analysis of differential equations 2ed.pdf_第2頁(yè)
A First Course in the numerical analysis of differential equations 2ed.pdf_第3頁(yè)
A First Course in the numerical analysis of differential equations 2ed.pdf_第4頁(yè)
A First Course in the numerical analysis of differential equations 2ed.pdf_第5頁(yè)
資源描述:

《A First Course in the numerical analysis of differential equations 2ed.pdf》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫(kù)。

1、252Classicaliterativemethodsdwherethed×diterationmatrixHandv∈Rareindependentofk.(Ofcourse,bothHandvmustdependonAandb,otherwiseconvergenceisimpossible.)Lemma12.1Givenanarbitrarylinearsystem(12.1),alinearone-stepstationarydscheme(12.3)convergestoauniqueboundedlimitx?∈R,reg

2、ardlessofthechoiceofstartingvaluex[0],ifandonlyifρ(H)<1,whereρ(·)denotesthespectralradius(A.1.5.2).Providedthatρ(H)<1,x?isthecorrectsolutionofthelinearsystem(12.1)ifandonlyifv=(I?H)A?1b.(12.4)ProofLetuscommencebyassumingρ(H)<1.InthiscaseweclaimthatlimHk=O.(12.5)k→∞Toprov

3、ethisstatement,wemakethesimplifyingassumptionthatHhasacompletesetofeigenvectors,hencethatthereexistanonsingulard×dmatrixVandadiagonald×dmatrixDsuchthatH=VDV?1(A.1.5.3andA.1.5.4).HenceH2=VDV?1×VDV?1=VD2V?1,H3=VD3V?1and,ingeneral,itistrivialtoprovebyinductionthatHk=VDk

4、V?1,k=0,1,2,...Therefore,passingtothelimit,limHk=VlimDkV?1.k→∞k→∞TheelementsalongthediagonalofDaretheeigenvaluesofH,henceρ(H)<1impliesDkk?→→∞Oandwededuce(12.5).Ifthesetofeigenvectorsisincomplete,(12.5)canbeprovedjustaseasilybyusingaJordanfactorization(seeA.1.5.6andExer

5、cise12.1).Ournextassertionisthatx[k]=Hkx[0]+(I?H)?1(I?Hk)v,k=0,1,2,...;(12.6)notethatρ(H)<1implies1∈σ(H),whereσ(H)isthesetofalleigenvalues(thespectrum)ofH,thereforetheinverseofI?Hexists.Theproofisbyinduction.Itisobviousthat(12.6)istruefork=0.Hence,letusassumeitfork≥0and

6、attemptitsveri?cationfork+1.Usingthede?nition(12.3)oftheiterativeschemeintandemwiththeinductionassumption(12.6),wereadilyobtainx[k+1]=Hx[k]+v=HHkx[0]+(I?H)?1(I?Hk)v+v=Hk+1x[0]+(I?H)?1(H?Hk+1)+(I?H)?1(I?H)v=Hk+1x[0]+(I?H)?1(I?Hk+1)vandtheproofof(12.6)iscomplete.Letting

7、k→∞in(12.6),(12.5)impliesatoncethattheiterativeprocessconverges,limx[k]=x?:=(I?H)?1v.(12.7)k→∞12.1Linearone-stepstationaryschemes253Wenextconsiderthecaseρ(H)≥1.Providedthat1∈σ(H),thematrixI?Hisinvertibleandx?=(I?H)?1vistheonlypossibleboundedlimitoftheiterativescheme.For

8、,supposetheexistenceofaboundedlimity?.Theny?=limx[k+1]=Hlimx[k]+v=Hy?+v,(12.8)k→∞k→∞thereforey?=x?.Even

當(dāng)前文檔最多預(yù)覽五頁(yè),下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁(yè),下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動(dòng)畫(huà)的文件,查看預(yù)覽時(shí)可能會(huì)顯示錯(cuò)亂或異常,文件下載后無(wú)此問(wèn)題,請(qǐng)放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫(kù)負(fù)責(zé)整理代發(fā)布。如果您對(duì)本文檔版權(quán)有爭(zhēng)議請(qǐng)及時(shí)聯(lián)系客服。
3. 下載前請(qǐng)仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進(jìn)行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時(shí)可能由于網(wǎng)絡(luò)波動(dòng)等原因無(wú)法下載或下載錯(cuò)誤,付費(fèi)完成后未能成功下載的用戶請(qǐng)聯(lián)系客服處理。