資源描述:
《《阿毘達磨俱舍論·界品》翻譯與極微論研究》由會員上傳分享,免費在線閱讀,更多相關內容在教育資源-天天文庫。
1、萬方數據各部派就極微假實問題的爭論,究其實質,正是對于“有”(sat)的理解的不同一一這也就關涉到各部派“二諦”論的差異與哲學基礎的不可調和性。有部宣稱極微實存,其根據恰恰在于“假必依實”的存在論原則。極微的無方分性、不可相互接觸等等特質皆由此原則衍生而來。關鍵詞:世親說一切有部俱舍論極微二諦中圖分類號:B9482萬方數據AbstractThethesisiscenteredonpresentingabrieflyannotatedChinesetranslationofChapteroneofthefifthcenturyA.D.Bu
2、ddhistphilosopherVasubandhu’s爿6廳f(功口r掰d^_oj口6辦li∥口(henceAKBh).InthischapterVasubandhuexpoundsVaibh冱.sika’SParamrm..utheoryandhiscritiques.TheoriginalSanskritTextofAKBhwasfortunatelyfoundbyMahapaoditaR百hulaS葫Ⅻ妙酗anain1930s.Sincethen,scholarshaveprovidedseveralcriticalediti
3、onsofAKBh.ThetranslationisbasedonaJapanesescholar,YasunoriEjima’Scriticaledition:ChapterI:Dhatunirdeja,Vasubandhu'sAbhidharmakogabhf.sya,andPradhan!SsecondeditionofAbhidharmakogabh6syaofVasubandhu.Paramfirtha(真都),XuanZang(玄奘),Sakurabe(桉部建)andPoussin’Stranslationswillalso
4、betakenextensivereferenceto.AlItheimportantdifferencesofwordingsandexplanationsintheseversionsthatInoticeareindicatedinthefootnotes.Vaibhfis.ika'sParaman.utheoryisanessentialcomplementtoitstheoryofdvasatyaandmetaphysics.SinceitgeneratedanincessantdebateamongcomtemporaryB
5、uddistschoolsandphilosophers,thisworkincludesanexhaustedstudyofitsfundamentaltheoreticalissues.BeforeweCalltumtotheseissues,however,itisnecessarytodealfirstwithsometerms.InChapterOne,Igiveabriefe鑼moIogicalanalysisofrfipaandrfipyate:4rup=lup—_nqpa一4rop_rfipyateBasedonmult
6、iplemeaningsofitsroot,Vasubandhuprovidestwodefinitionsof而pa,namely,badhyateandpratighata.Itiswidelyacceptedbysarvastivfidinsthatoneparaman.udoesnottakeanyspace.111us,paramfin,udoesnothaveimpenetrabilityandwouldviolatetheseconddefinitionofnapa.SomeJapanesescholars,suchasK
7、imuraTaikenandMizunoKougen,arguedthatVaibh百sika’Sparama.nuperceptionwouldviolateBuddhisttraditionalmahabhfitatheory.Toreviewtheirarguments,inChapterTwo,IanalyzefirsttherelationbetweenmahabhQtaandupadaya,andpointoutthattheformerisnotthematerialcauseofthelatter.butfunction
8、sak蘊ran,a.hetu.Thismeansmah五bhfitaandup副對aalebothtreatedasrealitiesandhavetheirownparam夏ous.Therefore,K