資源描述:
《基于高頻金融數(shù)據(jù)的中國股市波動(dòng)性研究》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫。
1、分類號學(xué)校代號地42密級學(xué)號2—0100—2101—143基于高頻金融數(shù)據(jù)的中國股市波動(dòng)性研究TheChineseStockMarketVolatilityResearchbasedonHigh—frequencyFinancialData指導(dǎo)教師姓名、職稱廑墨臣墜型塾握學(xué)科專業(yè)綾鹽堂湖南師范大學(xué)學(xué)位評定委員會(huì)辦公室二。一三年五月摘要隨著計(jì)算機(jī)技術(shù)的發(fā)展和全球經(jīng)濟(jì)一體化進(jìn)程的加快,高頻金融數(shù)據(jù)的獲得也越來越容易,高頻金融數(shù)據(jù)波動(dòng)率的估計(jì)逐漸成為當(dāng)今的研究熱點(diǎn)問題之一。一般情況下,股市的高頻數(shù)據(jù)波動(dòng)會(huì)表現(xiàn)出一些較低頻數(shù)據(jù)不同的特點(diǎn),刻畫股市高頻數(shù)據(jù)波動(dòng)性就是為了能夠準(zhǔn)確地
2、描繪了股市波動(dòng)的典型特征和趨勢,為股市風(fēng)險(xiǎn)管理提供理論支撐。本文以“已實(shí)現(xiàn)”波動(dòng)率模型為基礎(chǔ),運(yùn)用極差理論的方法,構(gòu)造賦權(quán)“已實(shí)現(xiàn)”極差波動(dòng),并研究了不同頻率的上證綜指和深證成指的波動(dòng)特征。在分析賦權(quán)“已實(shí)現(xiàn)"極差波動(dòng)的統(tǒng)計(jì)特征的基礎(chǔ)上,論文從微觀層面出發(fā),研究賦權(quán)“已實(shí)現(xiàn)”極差波動(dòng)與交易量之間的相互作用關(guān)系。結(jié)果表明:(1)賦權(quán)“己實(shí)現(xiàn)”極差波動(dòng)具有較小的方差,滿足波動(dòng)估計(jì)量的無偏性和有效性,且經(jīng)對數(shù)化處理后基本符合正態(tài)分布,具有良好的統(tǒng)計(jì)性質(zhì)。(2)深證成指1分鐘高頻數(shù)據(jù)的波動(dòng)與交易量間不存在Granger關(guān)系,而上證綜指5分鐘高頻數(shù)據(jù)的波動(dòng)與交易量互為Grange
3、r原因,這說明量價(jià)關(guān)系并不穩(wěn)定,尤其是在新興資本市場,很多投資者是屬于盲目性投資,存在從眾心理。(3)對上證綜指5分鐘高頻數(shù)據(jù)構(gòu)建VAR模型,證實(shí)了波動(dòng)與交易量之間存在聯(lián)動(dòng)性,模型解釋了日內(nèi)波動(dòng)的聚集性,而且交易量的變動(dòng)引起價(jià)格波動(dòng),這在~定程度上解釋了收益波動(dòng)的原因。同時(shí),波動(dòng)率也會(huì)反饋到交易量,進(jìn)而影響交易量的變動(dòng)。關(guān)鍵詞:高頻數(shù)據(jù);波動(dòng)率;加權(quán)已實(shí)現(xiàn)極差;VAR模型IIABSTRACTWiththecomputercommunicationtechnologyandeconomyworldwidedevelopment,whenhigll—frequencyfin
4、ancialdatatoobtainpossible,howtousehi曲frequencydatamodelingandestimatingthevolatilitybecameoneofthehottopicsinthestudyofproblems.Generallyspeaking,Thefluctuationsofthehigh—frequencydatashowsomedifferentcharacteristicsfromthelowerfrequencydata.Wemakeresearchofthevolatilityofhi曲-frequencyd
5、ataofthestockmarketinordertoaccuratelycharacterizethetypicalcharacteristicsandtrendsofthestockmarketvolatility,thenprovidetheoreticalsupportforsomeone.BasedontheRealizedVolatility,theresearchaboutthecharacteristicsofthedifferentfrequenciesofShanghaiCompositeIndexandShenzhenComponentIndex
6、datafluctuationshasbeendoneinthispaper.Fromwhich,theWeightedRange·basedvolatilityachievesbetterlevel.Another,thepaperalsodescribedtherelationshipbetweenthevolatilityandtradingvolume.Theresultsshowthat:(1)Theweightedranged-basedvolatilityhasachievedminimumvarianceamongfourmodels,effective
7、lyremovethe”intradayeffect”,andhasasmoothsequencefeatures.(2)Theresearchof1-minute-high—frequencydataofShenzhencomponentindexshowthatthereisnoGrangerrelationshipbetweenthevolatilityandtradingvolume,whileexistinginShanghaiStockExchange,whichmeansthattherelationshipbetweenv