資源描述:
《廣義神經(jīng)網(wǎng)絡(luò)的研究及其在交通流預(yù)測(cè)中的應(yīng)用》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫(kù)。
1、大連理工大學(xué)碩士學(xué)位論文廣義神經(jīng)網(wǎng)絡(luò)的研究及其在交通流預(yù)測(cè)中的應(yīng)用姓名:苑文江申請(qǐng)學(xué)位級(jí)別:碩士專業(yè):計(jì)算機(jī)應(yīng)用技術(shù)指導(dǎo)教師:譚國(guó)真20050316廣義神經(jīng)網(wǎng)絡(luò)的研究及其在交通流預(yù)測(cè)中的應(yīng)用ResearchofGeneralizedNeuralNetworkandItsApplicationinTrafficFlowForecastingAbstractAsanimportantaspectofIntelligemTransportationSystemsors),trigflowguidanceisconsideredasanopti
2、mumwaytoimprovetrRf并Cefficiencyandmobility.TheessentialoftheTrafficFlowGuidanceSystems(TFGS)aresupplingreal-timeexact蛐cinformation.Trafficflowisimportantinformationinurbantraffic,SOtrafficflowforecastinghasimportantsignificance.Therearemanyfactorsthatcarlinfluencethetraf
3、iCicflow,alloftheseresultsinthedifficultiesofreal-timewafficflowforecasting.Owingtothegoodadaptability,neuralnetworkhasbecomeacommonmodelforinformationforecasting.Basedontraditionalneuralnetwork,thispaperpresentsainteUigentneuronmodel,whichiscomposedoflinearlyindependemf
4、unctionsandSigmoidfunctionwithadjustableparameters.Itisprovedthattheinformationstorageabilityofthisintefiigemneuronisgreatlyimpmvedcomparedwithtraditionalones,consequentlygreatlyimprovestheinformationprocessingabilityofthewholeneuralnetwork.Meanwhile,inordertoreducethesi
5、zeoftheneuralnetwork’Sinput,thispaperUSeSthecorrelationtheorytoanalyzethecorrelationbetweenneighborroadsectiOIlS,andchoosethetra伍cflowofdifferentroadsections,whichhasstrongcorrelationwiththebeingforecastingoneasneuralnetwork’Sinputs,andestablishthetrafficflowmodelbasedon
6、generalizedneuralnetwork.Experimentresultsshowthat,thegeneralizedneuralnetworkconvergesfasterthantraditionalBPneuralnetwork,andmeetpracticalrequirementswell.Inordertogreatlyimprovedtheconvergespeedofgeneralizeneuralnetwork,thispaperdesignsaparalleltrairfingalgorithm,whic
7、hisbasedontrainingsetdecomposition.Thisparalleltrainingalgorithmusesanewcommunicationprofile.Thisprofilegreatlyreducesthecommunicationcostoftheparallelalgorithm.Experimentresultsshowthat,thisparalleltrainingalgorithmiseffectiveforreducingthetrainingtimeofgeneralizedneura
8、lnetwork.KeyWords:IntelligentNeuron;GeneralizedNeuralNetwork;TrafficFlowForecasting;ParallelComputing;G