Automatic Fruit Recognition Based on DCNN for Commercial Source Trace System

Automatic Fruit Recognition Based on DCNN for Commercial Source Trace System

ID:37046229

大小:3.35 MB

頁(yè)數(shù):84頁(yè)

時(shí)間:2019-05-17

Automatic Fruit Recognition Based on DCNN for Commercial Source Trace System_第1頁(yè)
Automatic Fruit Recognition Based on DCNN for Commercial Source Trace System_第2頁(yè)
Automatic Fruit Recognition Based on DCNN for Commercial Source Trace System_第3頁(yè)
Automatic Fruit Recognition Based on DCNN for Commercial Source Trace System_第4頁(yè)
Automatic Fruit Recognition Based on DCNN for Commercial Source Trace System_第5頁(yè)
資源描述:

《Automatic Fruit Recognition Based on DCNN for Commercial Source Trace System》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫(kù)。

1、碩士留學(xué)生學(xué)位論文AutomaticFruitRecognitionBasedonDCNNforCommercialSourceTraceSystem作者姓名HussainIsrar學(xué)科專業(yè)信息與通信工程指導(dǎo)教師賀前華所在學(xué)院電子信息與通信工程學(xué)院論文提交日期2018年05月日AutomaticFruitRecognitionBasedonDCNNforCommercialSourceTraceSystemADissertationSubmittedfortheDegreeofMasterCandidat

2、e:HussainIsrarSupervisor:Prof.HeQianHua賀前華SouthChinaUniversityofTechnologyGuangzhou,ChinaABSTRACTAutomaticfruitrecognition-basedonmachinevisionisconsideredaschallengingtaskduetosimilaritiesbetweenvarioustypesoffruitsandexternalenvironmentalchangese-glight

3、ing.Fruitandvegetableclassificationisoneofthemajorapplicationsthatcanbeutilizedinsupermarketandfruitshopstoautomaticallydetectandrecognizethekindoffruitsandvegetablespurchasedbycustomersandtodetermineitsprices.Althoughautomaticfruitrecognitionisgettingmor

4、eandmoreimportant,thistechnologyisstillfarfrombeingmature.Themainworkandinnovationsofthisthesisareasfollows:(1)AfruitrecognitionalgorithmbasedondeepconvolutionneuralNetwork(DCNN)isproposed.Mostoftheprevioustechniqueshavesomelimitationsbecausetheywereexami

5、nedandevaluatedunderlimiteddataset,furthermoretheyhavenotconsideredexternalenvironmentalchanges.Weevaluatedourmodelinmuchmorecomplicateddatasetwhichmostlymeetallreal-worldchallengestomakeourmodelrobust.(2)Weestablishedfruitimagesdatabasespanning15differen

6、tcategorieswhichcompriseof44406imagescollectedinourlabenvironmentduringaperiodof6monthsunderdifferentreal-worldconditions&keepinginviewthelimitationsofexistingdataset.(3)WealsoproposeanalgorithmforIntra-classrecognitionoffruitsusingDCNN(deepconvolutionaln

7、euralnetwork).Theresultsofcarryingouttheseexperimentsdemonstratethattheproposedapproachcouldbeautomaticallyrecognizethefruitwithaccuracyof99%.TheInputimagesweredirectlyinputtoDCNNfortrainingandrecognitionwithoutfeaturesextraction&theDCNNlearnoptimalfeatur

8、esfromimagesadaptively.Thefinaldecisionwasmadebasedonafusionofallregionsclassificationusingprobabilitymechanism.Keyword:FruitRecognition;Deeplearning;DeepConvolutionalNeuralNetworkITableofContentABSTRACT............

當(dāng)前文檔最多預(yù)覽五頁(yè),下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁(yè),下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動(dòng)畫的文件,查看預(yù)覽時(shí)可能會(huì)顯示錯(cuò)亂或異常,文件下載后無(wú)此問(wèn)題,請(qǐng)放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫(kù)負(fù)責(zé)整理代發(fā)布。如果您對(duì)本文檔版權(quán)有爭(zhēng)議請(qǐng)及時(shí)聯(lián)系客服。
3. 下載前請(qǐng)仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進(jìn)行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時(shí)可能由于網(wǎng)絡(luò)波動(dòng)等原因無(wú)法下載或下載錯(cuò)誤,付費(fèi)完成后未能成功下載的用戶請(qǐng)聯(lián)系客服處理。