A mixed finite element method for 2nd order elliptic problems.

A mixed finite element method for 2nd order elliptic problems.

ID:37239238

大?。?92.25 KB

頁(yè)數(shù):24頁(yè)

時(shí)間:2019-05-20

A mixed finite element method for 2nd order elliptic problems._第1頁(yè)
A mixed finite element method for 2nd order elliptic problems._第2頁(yè)
A mixed finite element method for 2nd order elliptic problems._第3頁(yè)
A mixed finite element method for 2nd order elliptic problems._第4頁(yè)
A mixed finite element method for 2nd order elliptic problems._第5頁(yè)
資源描述:

《A mixed finite element method for 2nd order elliptic problems.》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在行業(yè)資料-天天文庫(kù)。

1、AMIXEDFINITEELEMENT~,~THODFOR2~ndORDERELLIPTICPROBLEMSP.A.RaviartandJ.M°ThomasI.INTRODUCTIONLet~beaboundedopensubsetofRnwithaLipshitzcontinuousboundaryF.Weconsiderthe2ndorderellipticmodelproblem-Au=fin~,(I.I)Iu=0ohF,wherefisagivenfunctionofthespaceL2(~).Avar

2、iationalformofproblem(1.1),knownasthecomplementaryenergyprinciple,consistsinfindingp=graduwhichminimizesthecomplementaryenergyfuncti2nal(1.2)~(q)~=yI~I~dxnovertheaffinemanifoldWofvector-valuedfunctions~@(L2(~))n%whichsatisfytheequilibriumequation(1.3)div~+f=

3、0in~.TheuseofcomplementaryenergyprincipleforconstructingfiniteelementdiscretizationsofellipticproblemshasbeenfirstadvocatedbyFraeijsdeVeubeke[51,[6],

4、7].Theso-calledequilibriummethodconsistsfirstinconstructingafinite-dimensionalsubmanifold~hofW~andtheninfind

5、ing~h6~hwhichminimizesthecomplementaryenergyfunctionalI(q)overtheaffinemanifold%~h.For2ndorderellipticproblems,thenumericalanalysisoftheequilibriummethodhasbeenCentredeMath~matiquesAppliqu~es,EcolePolytechniqueandUnive~sit~deParisVI.~Universit~deParisVI.293m

6、adebyThomas[19],[20].Now,wenotethatthepracticalconstructionofthesubmanifold~hisnotingeneralasimpleptoblemsinceitrequiresasearchforexplicitsolutionsoftheequilibriumequation(1.3)inthewholedomain~.Inordertoavoidtheabovedifficulty,wecanuseamoregeneralvariational

7、principle,knowninelasticitytheoryastheHellinger-Reissnerprinciple,inwhichtheconstraint(1.3)hasbeenremovedattheexpensehoweverofintroducingaLagrangemultiplier.Thispaperwillbedevotedtothestudyofafiniteelementmethodbasedonthisvariationalprinciple.Infact,thisso-c

8、alledmixedmethodhasbeenfoundveryusefulinsomepracticalproblemsandreferto[17]foranapplicationtothenumericalsolutionofanonlinearproblemofradi~tivetransfer.Forsomegeneralresultsconcerningmixedmethods,werefertoOden[12],[13],Oden&Reddy[14],Reddy[16].Mixedmethodsfo

9、rsolving4thorderellipticequationshavebeenparticularlyanalyzed:seeBrezzi&Raviart[2],Ciarlet&Raviart[4],Johnson[9],[I0],andMiyoshi[11].ForrelatedresultswereferalsotoHaslinger&Hl~vacek[8].Anoutline

當(dāng)前文檔最多預(yù)覽五頁(yè),下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁(yè),下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動(dòng)畫的文件,查看預(yù)覽時(shí)可能會(huì)顯示錯(cuò)亂或異常,文件下載后無(wú)此問(wèn)題,請(qǐng)放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫(kù)負(fù)責(zé)整理代發(fā)布。如果您對(duì)本文檔版權(quán)有爭(zhēng)議請(qǐng)及時(shí)聯(lián)系客服。
3. 下載前請(qǐng)仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進(jìn)行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時(shí)可能由于網(wǎng)絡(luò)波動(dòng)等原因無(wú)法下載或下載錯(cuò)誤,付費(fèi)完成后未能成功下載的用戶請(qǐng)聯(lián)系客服處理。