資源描述:
《廣義Ball基函數(shù)的對偶基及其應(yīng)用》由會員上傳分享,免費在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫。
1、合肥工業(yè)大學(xué)碩士學(xué)位論文廣義Ball基函數(shù)的對偶基及其應(yīng)用姓名:江平申請學(xué)位級別:碩士專業(yè):計算機輔助幾何設(shè)計指導(dǎo)教師:鄔弘毅;檀結(jié)慶2003.3.1廣義Ball基函數(shù)的對偶基及其鹿用摘要本文筵分為鞠章。第一章赍紹Said.Ball趣線靛定義及其性質(zhì)。剝懲Said。Ball基鼴數(shù)豹對援(泛函)基。得到冪撩函數(shù)在Said-Ball基下的Marsden恒等式,及從B6zier曲線到Said-Ball曲線的轉(zhuǎn)換.并給出Said.Ball曲線的降階賦值算法.籌=肇套纓Wang-Ball鏨線熬定義及瞧震,鞋及Wang-Ball麴線靜遂
2、鼷求藿算法胙者在
3、這里蔭次給出Wang-Bail基函數(shù)的對偶泛函,并由此導(dǎo)出從Bemstein基到Wang-Ball基的顯式表示.第三搴奔紹Said-Bdzicr壅廣義Ball麴線(楚稼為SBGB鍪瑩線)定義,這類曲線包括Said-Ball越線、Bdzier鼬線及若們的遞歸算法,SBGB基函數(shù)的對偶泛函,鏊函數(shù)轉(zhuǎn)換公式.就多},還討論了sBGB髓線豹毽絡(luò)及細(xì)勢算瘺、/√第蹬輩奔纓Wang—Said型廣義Ball曲線(WSGB夔線)戇定義,憩類鏖騫線雹據(jù)Wang-Bail曲線、Said-Bail曲線及另外若千條中間曲線。以及它們的遞歸算法.棒者在醋數(shù)的轉(zhuǎn)按公式.
4、2.構(gòu)造出WSGB基函數(shù)的對偶泛函,并應(yīng)用WsGB褥弱另一耱方法實現(xiàn)WSGB整線麓B6zier魏線靜甄籀轉(zhuǎn)化要結(jié)果:WSGB基的對偶泛函,關(guān)鍵詞:Bgzier曲線,Said-Bail曲線,Wang-Ball曲線,SBGB曲線,WSGB曲線,對偶蘩DualbasisfunctionsforgeneralizedBallbasisanditsapplicationsAbstractThethesisiscomposedoffourchapters,InChapteronetheauthorgivesthedefinitionoftheSaid-B
5、allcurvesandtheirproperties.Bymeansofthedual(functional)ofSaid-Bailbasis,theMagsdenidentityisgotintermsofSaid-Ballbasis,andadegreereductionalgorithmforSaid-Ballcurvesispresented妞onghthetransformfromBgfiercurves協(xié)Said-Bailcurves,ChaptertwoisfocusedontheWang-BaitcBl-ves,includ
6、ingdefinition,propertiesandrecursionalgorithms.TheauthorderivesthedualfunctionaloftheWang-BallbasisforthefirsttimeandthenobtainstheexplicitexpressionofWang-BallbasisintermsoftheBemsteinbasis.TheemphasisofChapterthreeislaiduponthegeneralizedBallellivesofSaid-Beziertype(SBGBC
7、lLrves)whichincludesSaid·Ballcurves,B6ziercurvesandsomeoftheirintermediatecurvesasspecialCases.Thecontentsinvolvethereeursionalgorithms。thedualfunctionalofSBGBbasisandthetransformationformulabetweenSBGBbasisandBemsteinbasis.羽耱coBvexhuIlofSBGBandsubdivisionaigorithmsarealSOd
8、iscussed.Lastbutnotleast,generalizedBallcurvesoftheWang-SaidtypeCVVSGBcurves)ale{ntroducedinChapterfour.ItlspointedoutthatWang-Ballcurves。Said-Bailcurvesandsomeotherintermedlatecurvesarea11membersoftheWSGBfamily.Bymaking鑫thoroughstudyofWSGBcurves,theauthoracquirestwomainres
9、ults,i.e。,the衄ansfOrmationformulafromBemsteinbasistoWSGBbasisandtheconstructionoft