Model order selection for boolean matrix factorization

Model order selection for boolean matrix factorization

ID:37582181

大?。?.54 MB

頁(yè)數(shù):9頁(yè)

時(shí)間:2019-05-25

Model order selection for boolean matrix factorization_第1頁(yè)
Model order selection for boolean matrix factorization_第2頁(yè)
Model order selection for boolean matrix factorization_第3頁(yè)
Model order selection for boolean matrix factorization_第4頁(yè)
Model order selection for boolean matrix factorization_第5頁(yè)
資源描述:

《Model order selection for boolean matrix factorization》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在行業(yè)資料-天天文庫(kù)。

1、ModelOrderSelectionforBooleanMatrixFactorizationPauliMiettinenJillesVreekenMaxPlanckInstituteforInformaticsDept.ofMathematicsandComputerScienceSaarbrücken,GermanyUniversiteitAntwerpen,Belgiumpmiettin@mpi-inf.mpg.dejilles.vreeken@ua.ac.beABSTRACTcalledalow-dimensionalreprese

2、ntationofthedata,andisusuallyobtainedusingsomeformofmatrixfactorization.Matrixfactorizations—whereagivendatamatrixisapproximatedInmatrixfactorizationstheinputdata(representedasamatrix)byaproductoftwoormorefactormatrices—arepowerfuldataisdecomposedintotwo(ormore)factormatric

3、es.Usuallytheaimminingtools.Amongothertasks,matrixfactorizationsareoftenistohavelow-dimensionalfactormatriceswhoseproductapproxi-usedtoseparateglobalstructurefromnoise.This,however,requiresmatestheoriginalmatrixwell.Byimposingdifferentconstraints,solvingthe‘modelorderselect

4、ionproblem’ofdeterminingwhereoneobtainsdifferentfactorizations.Perhapsthetwobest-known?ne-grainedstructurestops,andnoisestarts,i.e.,whatistheproperfactorizationsareSingularValueDecomposition(SVD),closelysizeofthefactormatrices.relatedtoPrincipalComponentAnalysis(PCA),andNon

5、-negativeBooleanmatrixfactorization(BMF)—wheredata,factors,andMatrixFactorization(NMF).SVDandPCArestrictthefactorma-matrixproductareBoolean—hasreceivedincreasedattentionfromtricestobeorthogonal,whileNMFrequiresthedataandthefactorthedataminingcommunityinrecentyears.Thetechni

6、quehasmatricestobenon-negative.desirableproperties,suchashighinterpretabilityandnaturalsparsity.WhentheinputdataisBoolean,(thatis,containsonly0sand1s,ButsofarnomethodforselectingthecorrectmodelorderforBMFasistypicalwithsupermarketbasketdata),onecanapplyBooleanhasbeenavailab

7、le.InthispaperweproposetousetheMinimumMatrixFactorization(BMF).SimilarlytoNMF,itrestrictsthefactorDescriptionLength(MDL)principleforthistask.Besidessolvingmatricesforaddedinterpretabilityandsparsity.InBMF,thefactortheproblem,thiswell-foundedapproachhasnumerousbene?ts,e.g.,m

8、atricesarerequiredtobeBoolean,i.e.,containonly0sand1s.itisautomatic,doesnotrequire

當(dāng)前文檔最多預(yù)覽五頁(yè),下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁(yè),下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動(dòng)畫(huà)的文件,查看預(yù)覽時(shí)可能會(huì)顯示錯(cuò)亂或異常,文件下載后無(wú)此問(wèn)題,請(qǐng)放心下載。
2. 本文檔由用戶(hù)上傳,版權(quán)歸屬用戶(hù),天天文庫(kù)負(fù)責(zé)整理代發(fā)布。如果您對(duì)本文檔版權(quán)有爭(zhēng)議請(qǐng)及時(shí)聯(lián)系客服。
3. 下載前請(qǐng)仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進(jìn)行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時(shí)可能由于網(wǎng)絡(luò)波動(dòng)等原因無(wú)法下載或下載錯(cuò)誤,付費(fèi)完成后未能成功下載的用戶(hù)請(qǐng)聯(lián)系客服處理。