model selection for small sample regression

model selection for small sample regression

ID:7297710

大?。?18.07 KB

頁數(shù):15頁

時間:2018-02-10

model selection for small sample regression_第1頁
model selection for small sample regression_第2頁
model selection for small sample regression_第3頁
model selection for small sample regression_第4頁
model selection for small sample regression_第5頁
資源描述:

《model selection for small sample regression》由會員上傳分享,免費在線閱讀,更多相關(guān)內(nèi)容在工程資料-天天文庫。

1、MachineLearning,48,9–23,2002c2002KluwerAcademicPublishers.ManufacturedinTheNetherlands.ModelSelectionforSmallSampleRegressionOLIVIERCHAPELLEolivier.chapelle@liple.frLIP6,15rueduCapitaineScott,75015Paris,FranceVLADIMIRVAPNIKvlad@research.att.comAT&TResearchL

2、abs,200LaurelAvenue,Middletown,NJ07748,USAYOSHUABENGIObengioy@IRO.UMontreal.CADept.IRO,CP6128,UniversitedeMontr′eal,Succ.Centre-Ville,2920Chemindelatour,Montr′eal,Qu′ebec,′Canada,H3C3J7Editor:DaleSchuurmansAbstract.Modelselectionisanimportantingredientofmany

3、machinelearningalgorithms,inparticularwhenthesamplesizeinsmall,inordertostriketherighttrade-offbetweenover?ttingandunder?tting.Previousclassicalresultsforlinearregressionarebasedonanasymptoticanalysis.Wepresentanewpenalizationmethodforperformingmodelselectio

4、nforregressionthatisappropriateevenforsmallsamples.Ourpenalizationisbasedonanaccurateestimatoroftheratiooftheexpectedtrainingerrorandtheexpectedgeneralizationerror,intermsoftheexpectedeigenvaluesoftheinputcovariancematrix.Keywords:modelselection,parametricre

5、gression,uniformconvergencebounds1.IntroductionConsidertheproblemofestimatingaregressionfunctioninthesetoffunctions∞f(x,α)=αk?k(x)(1)k=1where{?}formabasisofL(Rp),e.g.aFourierorwaveletbasis.k2Givenacollectionofdata(x1,y1),...,(xn,yn),whereyi=f(xi,α0)+ξiandxi

6、,ξiareindependentlygeneratedbyunknowndistributionsP(x)andP(ξ),onewantsto?ndthefunctionf(x,α?)thatprovidesthesmallestvalueoftheexpectedlossR(α)=L(y,f(x,α))dP(x)dP(ξ)(2)whereL(y,f(x,α))isagivenlossfunction,usuallythequadraticlossL(y,f(x,α))=(y?f(x,α))2.Tomini

7、mizetheexpectedrisk(2),oneminimizestheempiricalrisk10O.CHAPELLE,V.VAPNIK,ANDY.BENGIOfunctional1nRemp(α)=L(yi,f(xi,α))ni=1Howeversincetheset(1)hasanin?niteexpansion,thisideadoesnotwork:forany?nitenumberof(different)examplestherearefunctionswhichhavezeroempir

8、icalriskandalargevalueoftheexpectedloss.Toguaranteeasmallexpectedrisk,onecanminimizetheempiricalfunctionaloveronlythe?rstd=d(n)functions?k(x).Thisisreasonableifthe?kareorderedinsuchwaythatputsth

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動畫的文件,查看預(yù)覽時可能會顯示錯亂或異常,文件下載后無此問題,請放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫負責(zé)整理代發(fā)布。如果您對本文檔版權(quán)有爭議請及時聯(lián)系客服。
3. 下載前請仔細閱讀文檔內(nèi)容,確認文檔內(nèi)容符合您的需求后進行下載,若出現(xiàn)內(nèi)容與標題不符可向本站投訴處理。
4. 下載文檔時可能由于網(wǎng)絡(luò)波動等原因無法下載或下載錯誤,付費完成后未能成功下載的用戶請聯(lián)系客服處理。