New results for Hammerstein system identification

New results for Hammerstein system identification

ID:38287430

大?。?37.46 KB

頁數(shù):6頁

時(shí)間:2019-06-03

New results for Hammerstein system identification_第1頁
New results for Hammerstein system identification_第2頁
New results for Hammerstein system identification_第3頁
New results for Hammerstein system identification_第4頁
New results for Hammerstein system identification_第5頁
資源描述:

《New results for Hammerstein system identification》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在行業(yè)資料-天天文庫。

1、Proceedingsofthe34thConferenceonDecision13ControlNewOrleans,LA-December1995WM08150NewResultsforHammersteinSystemIdentification*SundeepRangant,GregWolodkintandKameshwarPoollatAbstractoriginallyproposedin[9],usesarelaxationapproach.TheLTIsystemandthenonlinearityareindividu-Anovelapproachispres

2、entedfortheanalysisandallylinearlyparametrizedsothatthepredictioner-designofidentificationalgorithmsforHammersteinrorisseparatelylinearintheparametersforeachmodels,whichconsistofastaticnonlinearityfollowedcomponent.TheparameterscanthenbeidentifiedbyanLTIsystem.Weexaminetwoidentificationbymin

3、imizingthepredictionerrorthroughanit-problems.Inthefirstproblem,thesystemisexcitederativesequenceofstandardleast-squareproblems.withwhitenoiseandtheLTIsystemisFIR,andweThedifficultywiththemethodisthatitrequireslin-findasimpleexplicitsolutionfortheoptimalparam-earparametrizationsandtheconverg

4、enceoftheal-eterestimateandshowthatforsufficientlylargedatagorithmisnotfullyunderstood[11].lengthsastandarditerativetechniquegloballycon-vergestothisoptimalvalue.Inthesecondprob-Inthesecondprocedure[2,6,7,10,141,thesystemlem,theLTIsystemisgiveninstate-spaceformandisexcitedbywhitenoiseandthei

5、mpulseresponseweshowthatstandardstate-spacealgorithmscanbecoefficientsoftheLTIsystemcanthenbeobtainedeasilymodifiedtoidentifyHammersteinmodels.frominput-outputcorrelations.WiththeLTIsys-temidentified,thenonlinearitycanbeidentifiedwithleast-squaresmethods.Themaindifficultyhereisthe1Introducti

6、onwhitenoiseinputassumption.Asidefromrestrictingtheinput,theassumptionintroducesstatisticalinef-TheHammersteinmodel,whichconsistsofastaticficiencyduetothenon-whitenessofanyparticularnonlinearityfollowedbyalineartime-invariant(LTI)realizationoftheinputprocessoverafinitetimepe-system,hasproven

7、successfulinprovidingasim-riod.plenonlinearmodelappropriateforawidenumberofapplicationsincludingactuatormodeling,audi-OurapproachfortheFIRidentificationproblemwithtoryandvisualidentification,non-Gaussiansignalwhitenoiseinputbeginssimilartothecorrel

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動(dòng)畫的文件,查看預(yù)覽時(shí)可能會(huì)顯示錯(cuò)亂或異常,文件下載后無此問題,請(qǐng)放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫負(fù)責(zé)整理代發(fā)布。如果您對(duì)本文檔版權(quán)有爭(zhēng)議請(qǐng)及時(shí)聯(lián)系客服。
3. 下載前請(qǐng)仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進(jìn)行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時(shí)可能由于網(wǎng)絡(luò)波動(dòng)等原因無法下載或下載錯(cuò)誤,付費(fèi)完成后未能成功下載的用戶請(qǐng)聯(lián)系客服處理。