資源描述:
《全等三角形輔助線的作法》由會員上傳分享,免費在線閱讀,更多相關(guān)內(nèi)容在行業(yè)資料-天天文庫。
1、全等三角形問題中常見的輔助線的作法常見輔助線的作法有以下幾種:1)遇到等腰三角形,可作底邊上的高,利用“三線合一”的性質(zhì)解題,思維模式是全等變換中的“對折”.2)遇到三角形的中線,倍長中線,使延長線段與原中線長相等,構(gòu)造全等三角形,利用的思維模式是全等變換中的“旋轉(zhuǎn)”.3)遇到角平分線,可以自角平分線上的某一點向角的兩邊作垂線,利用的思維模式是三角形全等變換中的“對折”,所考知識點常常是角平分線的性質(zhì)定理或逆定理.4)過圖形上某一點作特定的平分線,構(gòu)造全等三角形,利用的思維模式是全等變換中的“平移”或“翻轉(zhuǎn)折疊”5)截長法與補短法,具體做法是在某條線段上截取一條線段
2、與特定線段相等,或是將某條線段延長,是之與特定線段相等,再利用三角形全等的有關(guān)性質(zhì)加以說明.這種作法,適合于證明線段的和、差、倍、分等類的題目.特殊方法:在求有關(guān)三角形的定值一類的問題時,常把某點到原三角形各頂點的線段連接起來,利用三角形面積的知識解答.一、倍長中線(線段)造全等例1、(“希望杯”試題)已知,如圖△ABC中,AB=5,AC=3,則中線AD的取值范圍是_________.例2、如圖,△ABC中,E、F分別在AB、AC上,DE⊥DF,D是中點,試比較BE+CF與EF的大小.-7-例3、如圖,△ABC中,BD=DC=AC,E是DC的中點,求證:AD平分∠B
3、AE.應(yīng)用:1、(09崇文二模)以的兩邊AB、AC為腰分別向外作等腰Rt和等腰Rt,連接DE,M、N分別是BC、DE的中點.探究:AM與DE的位置關(guān)系及數(shù)量關(guān)系.(1)如圖①當(dāng)為直角三角形時,AM與DE的位置關(guān)系是,線段AM與DE的數(shù)量關(guān)系是;(2)將圖①中的等腰Rt繞點A沿逆時針方向旋轉(zhuǎn)(0<<90)后,如圖②所示,(1)問中得到的兩個結(jié)論是否發(fā)生改變?并說明理由.二、截長補短1、如圖,中,AB=2AC,AD平分,且AD=BD,求證:CD⊥AC-7-2、如圖,AC∥BD,EA,EB分別平分∠CAB,∠DBA,CD過點E,求證;AB=AC+BD3、如圖,已知在內(nèi),,
4、,P,Q分別在BC,CA上,并且AP,BQ分別是,的角平分線。求證:BQ+AQ=AB+BP4、如圖,在四邊形ABCD中,BC>BA,AD=CD,BD平分,求證:5、如圖在△ABC中,AB>AC,∠1=∠2,P為AD上任意一點,求證;AB-AC>PB-PC-7-應(yīng)用:三、平移變換例1AD為△ABC的角平分線,直線MN⊥AD于A.E為MN上一點,△ABC周長記為,△EBC周長記為.求證>.例2如圖,在△ABC的邊上取兩點D、E,且BD=CE,求證:AB+AC>AD+AE.-7-四、借助角平分線造全等1、如圖,已知在△ABC中,∠B=60°,△ABC的角平分線AD,CE相
5、交于點O,求證:OE=OD2、如圖,△ABC中,AD平分∠BAC,DG⊥BC且平分BC,DE⊥AB于E,DF⊥AC于F.(1)說明BE=CF的理由;(2)如果AB=,AC=,求AE、BE的長.應(yīng)用:1、如圖①,OP是∠MON的平分線,請你利用該圖形畫一對以O(shè)P所在直線為對稱軸的全等三角形。請你參考這個作全等三角形的方法,解答下列問題:(1)如圖②,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分別是∠BAC、∠BCA的平分線,AD、CE相交于點F。請你判斷并寫出FE與FD之間的數(shù)量關(guān)系;(第23題圖)OPAMNEBCDFACEFBD圖①圖②圖③(2)如圖③,
6、在△ABC中,如果∠ACB不是直角,而(1)中的其它條件不變,請問,你在(1)中所得結(jié)論是否仍然成立?若成立,請證明;若不成立,請說明理由。-7-五、旋轉(zhuǎn)例1正方形ABCD中,E為BC上的一點,F(xiàn)為CD上的一點,BE+DF=EF,求∠EAF的度數(shù).例2D為等腰斜邊AB的中點,DM⊥DN,DM,DN分別交BC,CA于點E,F。(1)當(dāng)繞點D轉(zhuǎn)動時,求證DE=DF。(2)若AB=2,求四邊形DECF的面積。例3如圖,是邊長為3的等邊三角形,是等腰三角形,且,以D為頂點做一個角,使其兩邊分別交AB于點M,交AC于點N,連接MN,則的周長為;應(yīng)用:1、已知四邊形中,,,,,
7、,繞點旋轉(zhuǎn),它的兩邊分別交(或它們的延長線)于.當(dāng)繞點旋轉(zhuǎn)到時(如圖1),易證.當(dāng)繞點旋轉(zhuǎn)到時,在圖2和圖3這兩種情況下,上述結(jié)論是否成立?若成立,請給予證明;若不成立,線段,又有怎樣的數(shù)量關(guān)系?請寫出你的猜想,不需證明.-7-(圖1)(圖2)(圖3)2、(西城09年一模)已知:PA=,PB=4,以AB為一邊作正方形ABCD,使P、D兩點落在直線AB的兩側(cè).(1)如圖,當(dāng)∠APB=45°時,求AB及PD的長;(2)當(dāng)∠APB變化,且其它條件不變時,求PD的最大值,及相應(yīng)∠APB的大小.3、在等邊的兩邊AB、AC所在直線上分別有兩點M、N,D為外一點,且,,BD=