early warning modeling and analysis based

early warning modeling and analysis based

ID:38614304

大?。?.18 MB

頁數(shù):10頁

時間:2019-06-16

early warning modeling and analysis based_第1頁
early warning modeling and analysis based_第2頁
early warning modeling and analysis based_第3頁
early warning modeling and analysis based_第4頁
early warning modeling and analysis based_第5頁
資源描述:

《early warning modeling and analysis based》由會員上傳分享,免費在線閱讀,更多相關(guān)內(nèi)容在學術(shù)論文-天天文庫

1、FoodControl78(2017)33e42ContentslistsavailableatScienceDirectFoodControljournalhomepage:www.elsevier.com/locate/foodcontEarlywarningmodelingandanalysisbasedonanalytichierarchyprocessintegratedextremelearningmachine(AHP-ELM):Applicationtofoodsafetya,ba,bca,b,

2、*ZhiQiangGeng,ShanShanZhao,GuangCanTao,YongMingHanaCollegeofInformationScience&Technology,BeijingUniversityofChemicalTechnology,Beijing100029,ChinabEngineeringResearchCenterofIntelligentPSE,MinistryofEducationinChina,Beijing100029,ChinacGuizhouAcademyofTesti

3、ngandAnalysis,Guiyang,Guizhou550002,ChinaarticleinfoabstractArticlehistory:Sincetheactualfoodsafetymonitoringdatahavecharacteristicsofhigh-dimension,complexity,Received27October2016discretenessandnonlinearproperties,itisdif?culttoaccuratelypredicttheriskofac

4、tualfoodinspectionReceivedinrevisedformprocess.Therefore,thispaperproposesapredictivemodelingapproachbasedonanalytichierarchy25January2017process(AHP)integratedextremelearningmachine(ELM)(AHP-ELM).TheproposedapproachutilizesAccepted19February2017theAHPmodelt

5、oobtaintheeffectiveprocesscharacteristicinformation(PCIs).ComparedwiththeAvailableonline20February2017analytichierarchyprocess(AHP)integratedtraditionalarti?cialneuralnetwork(ANN)approach,theAHP-ELMpredictionmodeliseffectivelyveri?edbyexecutingalinearcompari

6、sonbetweenallPCIsandKeywords:theeffectivePCIsthroughdailyinspectiondatasourcefromthesupervisionandinspectiondepartmentFoodsafetyExtremelearningmachinerepositoryofChinaqualitysupervisionsystem.Finally,thePCIsandthepredictionvalueareobtainedtoAnalytichierarchy

7、processprovidemorereliablefoodinformationandidenti?cationofpotentiallyemergingfoodsafetyissues.TheArti?cialneuralnetworkproposedmethodisappliedtothefoodsafetyearlywarningandmonitoringsysteminChina.TheresultEarlywarningmodelingshowsthattheproposedmodeliseffec

8、tiveandfeasibleinprocessingthecomplexfoodinspectiondata.Meanwhile,itcanhelptoimprovethequalityoffoodproducts,ensurefoodsafetyandreducetheriskoffoodsafety.?2017ElsevierLtd.Allrightsreserved.1.Int

當前文檔最多預(yù)覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當前文檔最多預(yù)覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學公式或PPT動畫的文件,查看預(yù)覽時可能會顯示錯亂或異常,文件下載后無此問題,請放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫負責整理代發(fā)布。如果您對本文檔版權(quán)有爭議請及時聯(lián)系客服。
3. 下載前請仔細閱讀文檔內(nèi)容,確認文檔內(nèi)容符合您的需求后進行下載,若出現(xiàn)內(nèi)容與標題不符可向本站投訴處理。
4. 下載文檔時可能由于網(wǎng)絡(luò)波動等原因無法下載或下載錯誤,付費完成后未能成功下載的用戶請聯(lián)系客服處理。