6、-1x2}C、{x
7、x<-1}∪{x
8、x>2}D、{x
9、x-1}∪{x
10、x2}3、某地區(qū)經(jīng)過一年的新農(nóng)村建設(shè),農(nóng)村的經(jīng)濟(jì)收入增加了一倍,實(shí)現(xiàn)翻番,為更好地了解該地區(qū)農(nóng)村的經(jīng)濟(jì)收入變化情況,統(tǒng)計(jì)了該地區(qū)新農(nóng)村建設(shè)前后農(nóng)村的經(jīng)濟(jì)收入構(gòu)成比例,得到如下餅圖:則下面結(jié)論中不正確
11、的是:A、新農(nóng)村建設(shè)后,種植收入減少。B、新農(nóng)村建設(shè)后,其他收入增加了一倍以上。C、新農(nóng)村建設(shè)后,養(yǎng)殖收入增加了一倍。D、新農(nóng)村建設(shè)后,養(yǎng)殖收入與第三產(chǎn)業(yè)收入的總和超過了經(jīng)濟(jì)收入的一半。4、記Sn為等差數(shù)列{an}的前n項(xiàng)和,若3S3=S2+S4,a1=2,則a5=A、-12B、-10C、10D、12325、設(shè)函數(shù)f(x)=x+(a-1)x+ax,若f(x)為奇函數(shù),則曲線y=f(x)在點(diǎn)(0,0)處的切線方程為:A、y=-2xB、y=-xC、y=2xD、y=x6、在ABC中,AD為BC邊上的中線,E為AD的中點(diǎn),則=A、--B、--C、-+D、-7、
12、某圓柱的高為2,底面周長為16,其三視圖如右圖,圓柱表面上的點(diǎn)M在正視圖上的對應(yīng)點(diǎn)為A,圓柱表面上的點(diǎn)N在左視圖上的對應(yīng)點(diǎn)為B,則在此圓柱側(cè)面上,從M到N的路徑中,最短路徑的長度為A、B、C、3D、28.設(shè)拋物線C:y2=4x的焦點(diǎn)為F,過點(diǎn)(-2,0)且斜率為的直線與C交于M,N兩點(diǎn),則·=A.5B.6C.7D.89.已知函數(shù)f(x)=g(x)=f(x)+x+a,若g(x)存在2個(gè)零點(diǎn),則a的取值范圍是A.[-1,0)B.[0,+∞)C.[-1,+∞)D.[1,+∞)10.下圖來自古希臘數(shù)學(xué)家希波克拉底所研究的幾何圖形。此圖由三個(gè)半圓構(gòu)成,三個(gè)半圓的
13、直徑分別為直角三角形ABC的斜邊BC,直角邊AB,AC.△ABC的三邊所圍成的區(qū)域記為Ⅰ,黑色部分記為Ⅱ,其余部分記為Ⅲ。在整個(gè)圖形中隨機(jī)取一點(diǎn),此點(diǎn)取自Ⅰ,Ⅱ,Ⅲ的概率分別記為p1,p2,p3,則A.p1=p2B.p1=p3C.p2=p3D.p1=p2+p311.已知雙曲線C:-y2=1,O為坐標(biāo)原點(diǎn),F(xiàn)為C的右焦點(diǎn),過F的直線與C的兩條漸近線的交點(diǎn)分別為M,N.若△OMN為直角三角形,則∣MN∣=A.B.3C.D.412.已知正方體的棱長為1,每條棱所在直線與平面α所成的角都相等,則α截此正方體所得截面面積的最大值為A.B.C.D.二、填空題:本題
14、共4小題,每小題5分,共20分。13.若x,y滿足約束條件則z=3x+2y的最大值為.14.記Sn為數(shù)列{an}的前n項(xiàng)和.若Sn=2an+1,則S6=.15.從2位女生,4位男生中選3人參加科技比賽,且至少有1位女生入選,則不同的選法共有種.(用數(shù)字填寫答案)16.已知函數(shù)f(x)=2sinx+sin2x,則f(x)的最小值是.三.解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。第17~21題為必考題,每個(gè)試題考生都必須作答。第22、23題為選考題,考生根據(jù)要求作答。(一)必考題:共60分。17.(12分)在平面四邊形ABCD中,∠ADC=
15、90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB;(2)若DC=,求BC.18.(12分)如圖,四邊形ABCD為正方形,E,F(xiàn)分別為AD,BC的中點(diǎn),以DF為折痕把?DFC折起,使點(diǎn)C到達(dá)點(diǎn)P的位置,且PF⊥BP.(1)證明:平面PEF⊥平面ABFD;(2)求DP與平面ABFD所成角的正弦值.19.(12分)設(shè)橢圓C:+y2=1的右焦點(diǎn)為F,過F的直線l與C交于A,B兩點(diǎn),點(diǎn)M的坐標(biāo)為(2,0).(1)當(dāng)l與x軸垂直時(shí),求直線AM的方程;(2)設(shè)O為坐標(biāo)原點(diǎn),證明:∠OMA=∠OMB.20、(12分)某工廠的某種產(chǎn)品成箱包裝,每箱200
16、件,每一箱產(chǎn)品在交付用戶之前要對產(chǎn)品作檢驗(yàn),如檢驗(yàn)出不合格品,則更換為合格品,檢驗(yàn)時(shí),先從這箱產(chǎn)品中任取20件產(chǎn)品作檢驗(yàn),再根據(jù)檢驗(yàn)結(jié)果決定是否對余下的所有產(chǎn)品做檢驗(yàn),設(shè)每件產(chǎn)品為不合格品的概率都為P(0
17、費(fèi)用與賠償費(fèi)用的和記為X,求EX:(ii)以檢驗(yàn)費(fèi)用與賠償費(fèi)用和的期望值為決策依據(jù),是否該對這