資源描述:
《Fisher準則線性分類器設計資料》由會員上傳分享,免費在線閱讀,更多相關內容在教育資源-天天文庫。
1、一、基于Fisher準則線性分類器設計1、實驗內容:已知有兩類數(shù)據(jù)和二者的概率已知=0.6,=0.4。中數(shù)據(jù)點的坐標對應一一如下:數(shù)據(jù):x=0.23311.52070.64990.77571.05241.19740.29080.25180.66820.56220.90230.1333-0.54310.9407-0.21260.0507-0.08100.73150.33451.0650-0.02470.10430.31220.66550.58381.16531.26530.8137-0.33990.51520.722
2、6-0.20150.4070-0.1717-1.0573-0.2099y=2.33852.19461.67301.63651.78442.01552.06812.12132.47971.51181.96921.83401.87042.29481.77142.39391.56481.93292.20272.45681.75231.69912.48831.72592.04662.02262.37571.79872.08282.07981.94492.38012.23732.16141.92352.2604z=0.533
3、80.85141.08310.41641.11760.55360.60710.44390.49280.59011.09271.07561.00720.42720.43530.98690.48411.09921.02990.71271.01240.45760.85441.12750.77050.41291.00850.76760.84180.87840.97510.78400.41581.03150.75330.9548數(shù)據(jù)點的對應的三維坐標為x2=1.40101.23012.08141.16551.37401.18
4、291.76321.97392.41522.58902.84721.95391.25001.28641.26142.00712.18311.79091.33221.14661.70871.59202.93531.46642.93131.83491.83402.50962.71982.31482.03532.60301.23272.14651.56732.9414y2=1.02980.96110.91541.49010.82000.93991.14051.06780.80501.28891.46011.43340.7
5、0911.29421.37440.93871.22661.18330.87980.55920.51500.99830.91200.71261.28331.10291.26800.71401.24461.33921.18080.55031.47081.14350.76791.1288z2=0.62101.36560.54980.67080.89321.43420.95080.73240.57841.49431.09150.76441.21591.30491.14080.93980.61970.66031.39281.
6、40840.69090.84000.53811.37290.77310.73191.34390.81420.95860.73790.75480.73930.67390.86511.36991.1458數(shù)據(jù)的樣本點分布如下圖:1)請把數(shù)據(jù)作為樣本,根據(jù)Fisher選擇投影方向的原則,使原樣本向量在該方向上的投影能兼顧類間分布盡可能分開,類內樣本投影盡可能密集的要求,求出評價投影方向的函數(shù),并在圖形表示出來。并在實驗報告中表示出來,并求使取極大值的。用matlab完成Fisher線性分類器的設計,程序的語句要求有注釋。
7、2)根據(jù)上述的結果并判斷(1,1.5,0.6)(1.2,1.0,0.55),(2.0,0.9,0.68),(1.2,1.5,0.89),(0.23,2.33,1.43),屬于哪個類別,并畫出數(shù)據(jù)分類相應的結果圖,要求畫出其在上的投影。3)回答如下問題,分析一下的比例因子對于Fisher判別函數(shù)沒有影響的原因。2、實驗代碼x1=[0.23311.52070.64990.77571.05241.19740.29080.25180.66820.56220.90230.1333-0.54310.9407-0.21260.0
8、507-0.08100.73150.33451.0650-0.02470.10430.31220.66550.58381.16531.26530.8137-0.33990.51520.7226-0.20150.4070-0.1717-1.0573-0.2099];x2=[2.33852.19461.67301.63651.78442.01552.06812.