On-line Optimization of Sequential Monte Carlo Methods

On-line Optimization of Sequential Monte Carlo Methods

ID:39719062

大?。?37.46 KB

頁數(shù):6頁

時間:2019-07-10

On-line Optimization of Sequential Monte Carlo Methods_第1頁
On-line Optimization of Sequential Monte Carlo Methods_第2頁
On-line Optimization of Sequential Monte Carlo Methods_第3頁
On-line Optimization of Sequential Monte Carlo Methods_第4頁
On-line Optimization of Sequential Monte Carlo Methods_第5頁
資源描述:

《On-line Optimization of Sequential Monte Carlo Methods》由會員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫。

1、ProceedingsoftheAmericanControlConferenceAnchorage,AKMay8-10.2002On-lineOptimizationofSequentialMonteCarloMethodsusingStochasticApproximationArnaudDoucet’,VladislavB.TadiCDepartmentofElectricalandElectronicEngineering,TheUniversityofMelbourne,Parkville,Victoria305

2、2,Australia.Email:{a.doucet,v.tadic}Qee.mu.oz.auAbstractderweakassumptions,itcanbetypicallyshownthatthesealgorithmsconvergeinacertainsensetowardstheSequentialMonteCarlo(SMC)methodsakaParticleposteriorprobabilitydistributionsofinterestasymp-ateringtechniquesareaset

3、ofpowerfulandversatiletoticallyinthenumberofparticles[5],[SI.However,simulation-basedmethodstoperformoptimalstatees-theperformanceofSMCalgorithmsdependsheavilyontimationinnon-linearnon-Gaussianstatespacemodelsthevariousparametersofthealgorithms.Considerfor[SI.Inth

4、isapproach,theposteriorprobabilitydistri-exampletheclassofSequentialImportanceSamplingbutionsofinterestareestimatedusingacloudofran-Resampling(SISR)algorithms[7].Currentalgorithmsdomsampleswhicharecarriedovertimeusingimpor-aretypicallydesignedsoastooptimizesome“l(fā)o

5、cal”tancesamplingandresamplingtechniques.Currental-criteriasuchastheconditionalvarianceoftheimpor-gorithmsaretypicallydesignedsoastooptimizesometanceweightsintheimportancesamplingsteporthe“l(fā)ocal1’criteriasuchastheconditionalvarianceoftheconditionalvarianceofthenum

6、berofoffspringintheimportanceweightsintheimportancesamplingstep.resamplingstep.However,theeffectoftheselocalopti-However,theeffectoftheselocaloptimizationsisnotmizationsisnotclearontheglobalperformanceoftheclearontheglobalperformanceofthealgorithm;e.g.algorithm.Fo

7、rexample,samplingwithanon-locally.samplingwithanon-locallyoptimalimportancedistri-optimalimportancedistributionatagiventimecouldbutionmightbebeneficialatfurthertimesteps.Webebeneficialatfurthertimesteps.Soevenifoptimiz-presenthereanaltemativeprincipledapproachwher

8、eing“l(fā)ocal”criteriaissensible,onewouldpreferinap-theSMCisparametrizedanditsparametersoptimizedplicationstodesignanalgorithmoptimizinga“global”withrespec

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動畫的文件,查看預(yù)覽時可能會顯示錯亂或異常,文件下載后無此問題,請放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫負(fù)責(zé)整理代發(fā)布。如果您對本文檔版權(quán)有爭議請及時聯(lián)系客服。
3. 下載前請仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進(jìn)行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時可能由于網(wǎng)絡(luò)波動等原因無法下載或下載錯誤,付費(fèi)完成后未能成功下載的用戶請聯(lián)系客服處理。