NEURAL NETWORK WITH FUZZY SET-BASED CLASSIFICATION FOR SHORT-TERM LOAD FORECASTING

NEURAL NETWORK WITH FUZZY SET-BASED CLASSIFICATION FOR SHORT-TERM LOAD FORECASTING

ID:39766560

大?。?49.56 KB

頁(yè)數(shù):6頁(yè)

時(shí)間:2019-07-11

NEURAL NETWORK WITH FUZZY SET-BASED CLASSIFICATION FOR SHORT-TERM LOAD FORECASTING_第1頁(yè)
NEURAL NETWORK WITH FUZZY SET-BASED CLASSIFICATION FOR SHORT-TERM LOAD FORECASTING_第2頁(yè)
NEURAL NETWORK WITH FUZZY SET-BASED CLASSIFICATION FOR SHORT-TERM LOAD FORECASTING_第3頁(yè)
NEURAL NETWORK WITH FUZZY SET-BASED CLASSIFICATION FOR SHORT-TERM LOAD FORECASTING_第4頁(yè)
NEURAL NETWORK WITH FUZZY SET-BASED CLASSIFICATION FOR SHORT-TERM LOAD FORECASTING_第5頁(yè)
資源描述:

《NEURAL NETWORK WITH FUZZY SET-BASED CLASSIFICATION FOR SHORT-TERM LOAD FORECASTING》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫(kù)。

1、1386IEEETransactionsonPonsrSystems,Vol.13.No.4.Nohember1998NEURALNETWORKWITHFUZZYSET-BASEDCLASSIFICATIONFORSHORT-TERMLOADFORECASTINGM.Daneshdoost,SeniorMember,IEEEM.Lotfalian,SeniorMember.IEEEG.Bumroonggit&J.P.NgoyDeptartmentofElectricalEngineeringDepartmentofElectricalEngineeringDept.ofElect

2、ricalEngineeringSouthernIllinoisUniversityUniversityofEvansvilleSouthernIllinoisUniversityCarbondale,IL62901Evansville,IN47722Carbondale,IL62901Abstract:Electricpowerutilitiesrequireforecastofsystemsomedrawbackssuchasinaccurateprediction,difficultyindemandorelectricalloadforonetosevendaysahea

3、d.Thismodelingprocesses,numericalinstability,requirementofpaperstudiesashort-termelectricloadforecastingtechniquelargehistoricaldatabase,anddemandofhighhumanusingamulti-layeredfeedforwardArtificialNeuralNetworkexpertise.(ANN)andafuzzyset-basedclassificationalgorithm.TheRecently.theapplication

4、oftheartificialneuralnetworkhourlydataissubdividedintovariousclassofweather(ANN)toshort-termloadforecastinghasgainedagreatdealconditionsusingthefuzzysetrepresentationofweatherofinterestandseveralresearchershavereportedthevariablesandthentheANN'SaretrainedandusedtoperformeffectivenessoftheANNa

5、pproach[6,7,81.Unlikethetheloadforecastingupto120hoursaheadwitharemarkableprevioustechniques,theANNleamsthepatternsfromtheaccuracy.inputsandoutputsoftheutilities'systemandthen,itcreatesitsownnon-linearmodelsthatareusedtopredicttheshort-Keywords:Electricloadforecasting,Artificialneuraltermload

6、s.TheANNinputdataarestoredinthefollowingnetwork,Fuzzyset.way,thehourlyhistoricaldataaresubdividedintodifferentclassesbasedontheweatherconditionsusingtheconceptoffuzzysettheory.Foreachclassofdata,theANNcreatesa1.INTRODUCTIONnon-linearmodelwhichforecaststhehourlysystemloadupInthepastdecade,many

7、techniqueshavebeenusedforto120hoursahead.loadforecasting.Afewofthetechniquesare,thetimeseriesTheclassificationsaredonebasedonseveralmodel[11,exponentialsmoothingmethod[21,statespacecharacteristicssuchasseason(spring,winter,summer,andmethod[31

當(dāng)前文檔最多預(yù)覽五頁(yè),下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁(yè),下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動(dòng)畫的文件,查看預(yù)覽時(shí)可能會(huì)顯示錯(cuò)亂或異常,文件下載后無(wú)此問(wèn)題,請(qǐng)放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫(kù)負(fù)責(zé)整理代發(fā)布。如果您對(duì)本文檔版權(quán)有爭(zhēng)議請(qǐng)及時(shí)聯(lián)系客服。
3. 下載前請(qǐng)仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進(jìn)行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時(shí)可能由于網(wǎng)絡(luò)波動(dòng)等原因無(wú)法下載或下載錯(cuò)誤,付費(fèi)完成后未能成功下載的用戶請(qǐng)聯(lián)系客服處理。