A hybrid annual power load forecasting model based on generalized regression neural network with fruit fly optimization algorithm

A hybrid annual power load forecasting model based on generalized regression neural network with fruit fly optimization algorithm

ID:39909048

大?。?43.58 KB

頁數(shù):10頁

時間:2019-07-14

A hybrid annual power load forecasting model based on generalized regression neural network with fruit fly optimization algorithm_第1頁
A hybrid annual power load forecasting model based on generalized regression neural network with fruit fly optimization algorithm_第2頁
A hybrid annual power load forecasting model based on generalized regression neural network with fruit fly optimization algorithm_第3頁
A hybrid annual power load forecasting model based on generalized regression neural network with fruit fly optimization algorithm_第4頁
A hybrid annual power load forecasting model based on generalized regression neural network with fruit fly optimization algorithm_第5頁
資源描述:

《A hybrid annual power load forecasting model based on generalized regression neural network with fruit fly optimization algorithm》由會員上傳分享,免費在線閱讀,更多相關(guān)內(nèi)容在學術(shù)論文-天天文庫。

1、Knowledge-BasedSystems37(2013)378–387ContentslistsavailableatSciVerseScienceDirectKnowledge-BasedSystemsjournalhomepage:www.elsevier.com/locate/knosysAhybridannualpowerloadforecastingmodelbasedongeneralizedregressionneuralnetworkwithfruit?yoptimizationalgorithmHong-zeLi,SenGuo?,Chun-ji

2、eLi,Jing-qiSunSchoolofEconomicsandManagement,NorthChinaElectricPowerUniversity,Beijing102206,ChinaarticleinfoabstractArticlehistory:AccurateannualpowerloadforecastingcanprovidereliableguidanceforpowergridoperationandpowerReceived4April2012constructionplanning,whichisalsoimportantforthe

3、sustainabledevelopmentofelectricpowerindus-Receivedinrevisedform30May2012try.Theannualpowerloadforecastingisanon-linearproblembecausetheloadcurveshowsanon-linearAccepted18August2012characteristic.Generalizedregressionneuralnetwork(GRNN)hasbeenproventobeeffectiveindealingAvailableonline

4、30August2012withthenon-linearproblems,butitisveryregretfully?ndsthattheGRNNhaverarelybeenappliedtotheannualpowerloadforecasting.Therefore,theGRNNwasusedforannualpowerloadforecastinginthisKeywords:paper.However,howtodeterminetheappropriatespreadparameterinusingtheGRNNforpowerloadAnnualp

5、owerloadforecastingforecastingisakeypoint.Inthispaper,ahybridannualpowerloadforecastingmodelcombiningfruitGeneralizedregressionneuralnetworkFruit?yoptimizationalgorithm?yoptimizationalgorithm(FOA)andgeneralizedregressionneuralnetworkwasproposedtosolvethisOptimizationproblemproblem,wher

6、etheFOAwasusedtoautomaticallyselecttheappropriatespreadparametervalueforParameterselectiontheGRNNpowerloadforecastingmodel.Theeffectivenessofthisproposedhybridmodelwasprovedbytwoexperimentsimulations,whichbothshowthattheproposedhybridmodeloutperformstheGRNNmodelwithdefaultparameter,GRN

7、Nmodelwithparticleswarmoptimization(PSOGRNN),leastsquaressupportvectormachinewithsimulatedannealingalgorithm(SALSSVM),andtheordinaryleastsquareslinearregression(OLS_LR)forecastingmodelsintheannualpowerloadforecasting.ó2012ElsevierB.V.Allrightsreserved.1.Introductionneeded.However,bec

當前文檔最多預覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當前文檔最多預覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學公式或PPT動畫的文件,查看預覽時可能會顯示錯亂或異常,文件下載后無此問題,請放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫負責整理代發(fā)布。如果您對本文檔版權(quán)有爭議請及時聯(lián)系客服。
3. 下載前請仔細閱讀文檔內(nèi)容,確認文檔內(nèi)容符合您的需求后進行下載,若出現(xiàn)內(nèi)容與標題不符可向本站投訴處理。
4. 下載文檔時可能由于網(wǎng)絡(luò)波動等原因無法下載或下載錯誤,付費完成后未能成功下載的用戶請聯(lián)系客服處理。