資源描述:
《Sequentiao Monte Carlo Methods for Multi-Target Filtering with Random Finite Sets》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫。
1、I.INTRODUCTIONMulti-targetfilteringisaclassofdynamicSequentialMonteCarlostateestimationproblemsinwhichtheentityofinterestisafinitesetthatisrandominthenumberMethodsforMulti-Targetofelementsaswellasthevaluesofindividualelements[4,5,6].Randomfinitesets(RFSs)areFi
2、lteringwithRandomFinitethereforenaturalrepresentationsofmulti-targetstatesandmulti-targetmeasurements.ThemodellingofSetsmulti-targetdynamicsusingrandomsetsnaturallyleadstoalgorithmswhichincorporatetrackinitiationandtermination,aprocedurethathasmostlybeenperfor
3、medseparatelyintraditionaltrackingBA-NGUVOalgorithms.Moreimportantly,randomsetsprovideUniversityofMelbournearigorousunifiedframeworkfortheseeminglyAustraliaunconnectedsubdisciplinesofdatafusion[15,17,25].SUMEETPALSINGHAlthoughstochasticgeometricalmodels,includ
4、ingCambridgeUniversitydeformabletemplatesandRFSs(orsimplefinitepointU.K.processes)havelongbeenusedbystatisticianstoARNAUDDOUCETdeveloptechniquesforobjectrecognitioninstaticUniversityofBritishColumbiaCanadaimages[2],theirusehasbeenlargelyoverlookedinthedatafusi
5、onandtrackingliteratureuntilrecently[24].TheearliestpublishedworkusingapointRandomfinitesets(RFSs)arenaturalrepresentationsofprocessformalismformulti-targetfilteringappearsmulti-targetstatesandobservationsthatallowmulti-sensortobe[35].Apoint-process-basedfilte
6、rwasalsomulti-targetfilteringtofitintheunifyingrandomsetframeworkproposedin[47]toestimateanunknownbutfixedfordatafusion.Althoughthefoundationhasbeenestablishednumberoftargets.In[32],[33],and[41],ajumpintheformoffinitesetstatistics(FISST),itsrelationshiptoproce
7、sswascombinedwithstochasticdiffusionconventionalprobabilityisnotclear.Furthermore,optimalBayesianmulti-targetfilteringisnotyetpracticalduetoequationsonanon-Euclideanmanifoldtotrackatheinherentcomputationalhurdle.Eventheprobabilitytime-varyingnumberoftargets.Th
8、esameproblemhypothesisdensity(PHD)filter,whichpropagatesonlythefirstwithcontinuousstateevolutionandmarked-pointmoment(orPHD)insteadofthefullmulti-targetposterior,processobservation