資源描述:
《CATIA-spur gear》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫(kù)。
1、ParametricDesignofanInvoluteSpurGearPart1TableofusefulparametersandformulasThetablebelowcontainstheparametersandformulasusedlaterinthisproject:?Thetableisgivenfirstsothatyoucanuseitforfurtheroperations.?Alltheunitsaredefinedinthemetricsystem.?Thisfigureshowsthea
2、,ra,rb,rf,rpparametersdefinedinthetable:#ParameterTypeorunitFormulaDescriptionangularPressureangle:technologicconstant1a20degdegree(10deg≤a≤20deg)2mmillimeter—Modulus.3Zinteger—Numberofteeth(5≤Z≤200).Pitchoftheteeth4pmillimeterm*πonastraightgenerativerack.Circul
3、artooththickness,5emillimeterp/2measuredonthepitchcircle.Addendum=heightofatooth6hamillimetermabovethepitchcircle.Dedendum=depthofatoothbelowifm>1.25thepitchcircle.Proportionnally7hfmillimeterhf=m*1.25greaterelsehf=m*1.4forasmallmodulus(≤1.25mm).8rpmillimeterm*Z
4、/2Radiusofthepitchcircle.9ramillimeterrp+haRadiusoftheoutercircle.10rfmillimeterrp-hfRadiusoftherootcircle.11rbmillimeterrp*cos(a)Radiusofthebasecircle.Radiusoftherootconcavecorner.12rcmillimeterm*0.38(m*0.38)isanormativeformula.floatingSweepparameter13tpoint0≤t
5、≤1oftheinvolutecurve.numberYcoordinaterb*(sin(t*π)-14ydmillimeteroftheinvolutetoothprofile,cos(t*π)*t*π)generatedbythetparameter.rb*(cos(t*π)+Zcoordinate15zdmillimetersin(t*π)*t*π)oftheinvolutetoothprofile.Radiusoftheosculatingcircleof16romillimeterrb*a*π/180deg
6、theinvolutecurve,onthepitchcircle.angularsqrt(1/cos(a)2-1)/Angleofthepointoftheinvolute17cdegreePI*180degthatintersectsthepitchcircle.angularatan(yd(c)/zd(c))+Rotationangleusedformakinga18phidegree90deg/ZgearsymetrictotheZXplanePart2DesigningParametricgear?Setup
7、thegenerativeshapedesignworkshop?configuretheenvironmentforshowingparametersandformulas?Settheinitialvalue?Mostofthegeometricparametersarerelatedtoa,m,andZ.Presstheaddformulabuttonandedittheformula.?Checktheprimaryandcomputedparameters?Parametriclawsoftheinvolut
8、ecurveUptonow,wehavedefinedformulasforcomputingparameters.Nowweneedtodefinetheformulasdefiningthe{Y,Z}cartesianpositionofthepointsontheinvolutecurveofatooth.Wecouldas