Topics in Representation Theory SU

Topics in Representation Theory SU

ID:39990638

大?。?12.14 KB

頁數(shù):5頁

時間:2019-07-16

Topics in Representation Theory SU_第1頁
Topics in Representation Theory SU_第2頁
Topics in Representation Theory SU_第3頁
Topics in Representation Theory SU_第4頁
Topics in Representation Theory SU_第5頁
資源描述:

《Topics in Representation Theory SU》由會員上傳分享,免費在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫。

1、TopicsinRepresentationTheory:SU(2)RepresentationsandTheirApplicationsWe’vesofarbeenstudyingaspeci?crepresentationofanarbitrarycompactLiegroup,theadjointrepresentation.Therootsaretheweightsofthisrepre-sentation.Wewouldnowliketobeginthestudyofarbitaryrepresentationsandtheirwei

2、ghts.Anarbitrary?nitedimensionsionalrepresesentationwillhaveadirectsumdecompositionMV=Vααwheretheαaretheweightsoftherepresentationlabelledbyelementsoft?,andVαistheα-weightspace,i.e.thevectorsvinVsatisfyingHv=α(H)vforH∈t.ThedimensionofVαiscalledthemultiplicityofα.Theproblemwe

3、wanttosolveforeachcompactLiegroupGistoidentifytheirreduciblerepresentations,computingtheirweightsandmultiplicities.Animportantrelationbetweenrootsandweightsisthefollowing:Lemma1.IfX∈gβ,thenitmapsX:Vα→Vα+βProof:Ifv∈Vα,H∈tHXv=XHv+[H,X]v=Xα(H)v+β(H)Xv=(α(H)+β(H))Xvsotherootsact

4、onthesetofweightsbytranslation.Wewillbeginwiththesimplestcase,thatofG=SU(2).Thiscaseisofgreatimportancebothasanexampleofallthephenomenawewanttostudyforhigherrankcases,aswellasplayingafundamentalpartitselfintheanalysisofthegeneralcase.1ReviewofSU(2)RepresentationsOnereasontha

5、tSU(2)representationsareespeciallytractableisthatthereisasimpleexplicitconstructionoftheirreduciblerepresentations.ConsiderthespaceVnofhomogeneouspolynomialsoftwocomplexvariables.Anelementof2thisspaceisoftheformf(z,z)=azn+azn?1z+···+azn1201112n2ThegroupSU(2)actsonVnthroughth

6、eactionofU∈SU(2)asalinear2transformationonthevectorz=(z1,z2)asfollowsπ(U)f(z)=f(U?1z)1Thisisagrouphomomorphismsince?1?1?1π(U1)(π(U2)f)(z)=(π(U2)f)(U1z)=f(U2U1z)=π(U1U2)f(z)TherepresentationonVnisofdimensionn+1andonecanshowthatitis2irreducible.Bydi?erentiatingtheactionofthegr

7、ouponecanexplicitlygettheactionoftheLiealgebraandone?ndsthat?f?fπ?(H)f=?z1+z2?z1?z2+?fπ?(X)f=?z2?z1??fπ?(X)f=?z1?z2OnecanexplicitlyworkouthowtheLiealgebraactsonVn.Notethat2actingonthemonomialswe?ndπ(H)zjzk=(?j+k)zjzk?1212π(X+)zjzk=?jzj?1zk+1?1212π(X?)zjzk=?kzj+1zk?1?1212Them

8、onomialsareeigenvectorsofπ?(H)witheigenvalues?n,?n+2,···,n?2,n,thesearethew

當前文檔最多預(yù)覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當前文檔最多預(yù)覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動畫的文件,查看預(yù)覽時可能會顯示錯亂或異常,文件下載后無此問題,請放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫負責整理代發(fā)布。如果您對本文檔版權(quán)有爭議請及時聯(lián)系客服。
3. 下載前請仔細閱讀文檔內(nèi)容,確認文檔內(nèi)容符合您的需求后進行下載,若出現(xiàn)內(nèi)容與標題不符可向本站投訴處理。
4. 下載文檔時可能由于網(wǎng)絡(luò)波動等原因無法下載或下載錯誤,付費完成后未能成功下載的用戶請聯(lián)系客服處理。