Topics in Representation Theory- The Adjoint Representation

Topics in Representation Theory- The Adjoint Representation

ID:41237269

大?。?0.68 KB

頁數:4頁

時間:2019-08-20

Topics in Representation Theory- The Adjoint Representation_第1頁
Topics in Representation Theory- The Adjoint Representation_第2頁
Topics in Representation Theory- The Adjoint Representation_第3頁
Topics in Representation Theory- The Adjoint Representation_第4頁
資源描述:

《Topics in Representation Theory- The Adjoint Representation》由會員上傳分享,免費在線閱讀,更多相關內容在學術論文-天天文庫

1、TopicsinRepresentationTheory:TheAdjointRepresentation1TheAdjointRepresentationBesidestheleftandrightactionsofGonitself,thereistheconjugationactionc(g):h→ghg?1Unliketheleftandrightactionswhicharetransitive,thisactionhas?xedpoints,includingtheidentity.De?nition1(AdjointRepresentation)

2、.Thedi?erentialoftheconjugationaction,evaluatedattheidentity,iscalledtheadjointactionAd(g)=c?(g)(e):TeG→TeGIdentifyinggwithTeGandinvokingthechainruletoshowthatAd(g1)?Ad(g2)=Ad(g1g2)thisgivesahomomorphismAd(g):G→GL(g)calledtheadjointrepresentation.So,foranyLiegroup,wehaveadistinguish

3、edrepresentationwithdimensionofthegroup,givenbylineartransformationsontheLiealgebra.LaterwewillseethatthereisaninnerproductontheLiealgebrawithrespecttowhichthesetransformationsareorthogonal.Forthematrixgroupcase,theadjointrepresentationisjusttheconjugationactiononmatricesAd(g)(y)=gY

4、g?1sinceonecanthinkoftheLiealgebraintermsofmatricesin?nitesimallyclosetotheunitmatrixandcarryovertheconjugationactiontothem.GivenanyLiegrouprepresentationπ:G→GL(V)takingthedi?erentialgivesarepresentationdπ:g→End(V)de?nedbyddπ(X)v=(π(exp(tX))v)

5、t=0dt1forv∈V.Usingourpreviousformulafor

6、thederivativeofthedi?erentialoftheexponentialmap,we?ndfortheadjointrepresentationAd(g)thattheassociatedLiealgebrarepresentationisgivenbyddad(X)(Y)=(c(exp(tX))?(Y))

7、t=0=(Ad(exp(tX))(Y))

8、t=0=[X,Y]dtdtForthespecialcaseofmatrixgroupswecancheckthiseasilysinceexpandingthematrixexponential

9、givesetXYe?tX=Y+t[X,Y]+O(t2)SoassociatedtoAd(G),theadjointrepresentationoftheLiegroupGong,takingthederivativewehavead(g),aLiealgebrarepresentationofgonitselfad(g):X∈g→ad(X)=[X,·]∈End(g)Animportantpropertyoftheadjointrepresentationisthatthereisaninvari-antbilinearformong.Thisiscalled

10、the“Killingform”,afterthemathematicianWilhelmKilling(1847-1823).KillingwasresponsibleformanyimportantideasinthetheoryofLiealgebrasandtheirrepresentations,butnotfortheKillingform.Borelseemstohavebeenthe?rsttousethisterminology,butnowsayshecan’trememberwhatinspiredhimtouseit[1].De?nit

11、ion2(KillingForm).T

當前文檔最多預覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當前文檔最多預覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數學公式或PPT動畫的文件,查看預覽時可能會顯示錯亂或異常,文件下載后無此問題,請放心下載。
2. 本文檔由用戶上傳,版權歸屬用戶,天天文庫負責整理代發(fā)布。如果您對本文檔版權有爭議請及時聯(lián)系客服。
3. 下載前請仔細閱讀文檔內容,確認文檔內容符合您的需求后進行下載,若出現內容與標題不符可向本站投訴處理。
4. 下載文檔時可能由于網絡波動等原因無法下載或下載錯誤,付費完成后未能成功下載的用戶請聯(lián)系客服處理。