Topics in Representation Theory- The Adjoint Representation

Topics in Representation Theory- The Adjoint Representation

ID:41237269

大?。?0.68 KB

頁數(shù):4頁

時間:2019-08-20

Topics in Representation Theory- The Adjoint Representation_第1頁
Topics in Representation Theory- The Adjoint Representation_第2頁
Topics in Representation Theory- The Adjoint Representation_第3頁
Topics in Representation Theory- The Adjoint Representation_第4頁
資源描述:

《Topics in Representation Theory- The Adjoint Representation》由會員上傳分享,免費在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫。

1、TopicsinRepresentationTheory:TheAdjointRepresentation1TheAdjointRepresentationBesidestheleftandrightactionsofGonitself,thereistheconjugationactionc(g):h→ghg?1Unliketheleftandrightactionswhicharetransitive,thisactionhas?xedpoints,includingtheidentity.De?nition1(AdjointRepresentation)

2、.Thedi?erentialoftheconjugationaction,evaluatedattheidentity,iscalledtheadjointactionAd(g)=c?(g)(e):TeG→TeGIdentifyinggwithTeGandinvokingthechainruletoshowthatAd(g1)?Ad(g2)=Ad(g1g2)thisgivesahomomorphismAd(g):G→GL(g)calledtheadjointrepresentation.So,foranyLiegroup,wehaveadistinguish

3、edrepresentationwithdimensionofthegroup,givenbylineartransformationsontheLiealgebra.LaterwewillseethatthereisaninnerproductontheLiealgebrawithrespecttowhichthesetransformationsareorthogonal.Forthematrixgroupcase,theadjointrepresentationisjusttheconjugationactiononmatricesAd(g)(y)=gY

4、g?1sinceonecanthinkoftheLiealgebraintermsofmatricesin?nitesimallyclosetotheunitmatrixandcarryovertheconjugationactiontothem.GivenanyLiegrouprepresentationπ:G→GL(V)takingthedi?erentialgivesarepresentationdπ:g→End(V)de?nedbyddπ(X)v=(π(exp(tX))v)

5、t=0dt1forv∈V.Usingourpreviousformulafor

6、thederivativeofthedi?erentialoftheexponentialmap,we?ndfortheadjointrepresentationAd(g)thattheassociatedLiealgebrarepresentationisgivenbyddad(X)(Y)=(c(exp(tX))?(Y))

7、t=0=(Ad(exp(tX))(Y))

8、t=0=[X,Y]dtdtForthespecialcaseofmatrixgroupswecancheckthiseasilysinceexpandingthematrixexponential

9、givesetXYe?tX=Y+t[X,Y]+O(t2)SoassociatedtoAd(G),theadjointrepresentationoftheLiegroupGong,takingthederivativewehavead(g),aLiealgebrarepresentationofgonitselfad(g):X∈g→ad(X)=[X,·]∈End(g)Animportantpropertyoftheadjointrepresentationisthatthereisaninvari-antbilinearformong.Thisiscalled

10、the“Killingform”,afterthemathematicianWilhelmKilling(1847-1823).KillingwasresponsibleformanyimportantideasinthetheoryofLiealgebrasandtheirrepresentations,butnotfortheKillingform.Borelseemstohavebeenthe?rsttousethisterminology,butnowsayshecan’trememberwhatinspiredhimtouseit[1].De?nit

11、ion2(KillingForm).T

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動畫的文件,查看預(yù)覽時可能會顯示錯亂或異常,文件下載后無此問題,請放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫負(fù)責(zé)整理代發(fā)布。如果您對本文檔版權(quán)有爭議請及時聯(lián)系客服。
3. 下載前請仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時可能由于網(wǎng)絡(luò)波動等原因無法下載或下載錯誤,付費完成后未能成功下載的用戶請聯(lián)系客服處理。