2005-A framework for learning predictive structures from multiple tasks and unlabeled data

2005-A framework for learning predictive structures from multiple tasks and unlabeled data

ID:40021550

大小:392.23 KB

頁(yè)數(shù):37頁(yè)

時(shí)間:2019-07-17

2005-A framework for learning predictive structures from multiple tasks and unlabeled data_第1頁(yè)
2005-A framework for learning predictive structures from multiple tasks and unlabeled data_第2頁(yè)
2005-A framework for learning predictive structures from multiple tasks and unlabeled data_第3頁(yè)
2005-A framework for learning predictive structures from multiple tasks and unlabeled data_第4頁(yè)
2005-A framework for learning predictive structures from multiple tasks and unlabeled data_第5頁(yè)
資源描述:

《2005-A framework for learning predictive structures from multiple tasks and unlabeled data》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫(kù)。

1、JournalofMachineLearningResearch6(2005)1817–1853Submitted5/05;Revised8/05;Published11/05AFrameworkforLearningPredictiveStructuresfromMultipleTasksandUnlabeledDataRieKubotaAndorie1@us.ibm.comIBMT.J.WatsonResearchCenterYorktownHeights,NY10598,U.S.A.TongZhangtzhang@yahoo-inc.c

2、omYahooResearchNewYork,NY,U.S.A.Editor:PeterBartlettAbstractOneofthemostimportantissuesinmachinelearningiswhetheronecanimprovetheperformanceofasupervisedlearningalgorithmbyincludingunlabeleddata.Methodsthatusebothlabeledandunlabeleddataaregenerallyreferredtoassemi-supervise

3、dlearning.Althoughanumberofsuchmethodsareproposed,atthecurrentstage,westilldon’thaveacompleteunderstandingoftheire?ectiveness.Thispaperinvestigatesacloselyrelatedproblem,whichleadstoanovelapproachtosemi-supervisedlearning.Speci?callyweconsiderlearningpredictivestructuresonh

4、ypothesisspaces(thatis,whatkindofclassi?ershavegoodpredictivepower)frommultiplelearningtasks.Wepresentageneralframeworkinwhichthestructurallearningproblemcanbeformulatedandanalyzedtheoretically,andrelateittolearningwithunlabeleddata.Underthisframework,algorithmsforstructura

5、llearningwillbeproposed,andcomputationalissueswillbeinvestigated.Experimentswillbegiventodemonstratethee?ectivenessoftheproposedalgorithmsinthesemi-supervisedlearningsetting.1.IntroductionInmachinelearningapplications,onecanoften?ndalargeamountofunlabeleddatawithoutdi?culty

6、,whilelabeleddataarecostlytoobtain.Thereforeanaturalquestioniswhetherwecanuseunlabeleddatatobuildamoreaccurateclassi?er,giventhesameamountoflabeleddata.Thisproblemisoftenreferredtoassemi-supervisedlearning.Ingeneral,semi-supervisedlearningalgorithmsusebothlabeledandunlabele

7、ddatatotrainaclassi?er.Althoughanumberofmethodshavebeenproposed,theire?ectivenessisnotalwaysclear.Forexample,Vapnikintroducedthenotionoftransductiveinference(Vapnik,1998),whichmayberegardedasanapproachtosemi-supervisedlearning.Al-thoughsomesuccesshasbeenreported(e.g.,seeJoa

8、chims,1999),therehasalsobeencriticismpointingoutthatthismethodmaynotbehavewellunde

當(dāng)前文檔最多預(yù)覽五頁(yè),下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁(yè),下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動(dòng)畫的文件,查看預(yù)覽時(shí)可能會(huì)顯示錯(cuò)亂或異常,文件下載后無(wú)此問題,請(qǐng)放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫(kù)負(fù)責(zé)整理代發(fā)布。如果您對(duì)本文檔版權(quán)有爭(zhēng)議請(qǐng)及時(shí)聯(lián)系客服。
3. 下載前請(qǐng)仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進(jìn)行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時(shí)可能由于網(wǎng)絡(luò)波動(dòng)等原因無(wú)法下載或下載錯(cuò)誤,付費(fèi)完成后未能成功下載的用戶請(qǐng)聯(lián)系客服處理。