03 - Incremental Learning from Noisy Data

03 - Incremental Learning from Noisy Data

ID:40385653

大?。?.69 MB

頁(yè)數(shù):38頁(yè)

時(shí)間:2019-08-01

03 - Incremental Learning from Noisy Data_第1頁(yè)
03 - Incremental Learning from Noisy Data_第2頁(yè)
03 - Incremental Learning from Noisy Data_第3頁(yè)
03 - Incremental Learning from Noisy Data_第4頁(yè)
03 - Incremental Learning from Noisy Data_第5頁(yè)
資源描述:

《03 - Incremental Learning from Noisy Data》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫(kù)

1、MachineLearning1:317-354,1986?1986KluwerAcademicPublishers,Boston-ManufacturedinTheNetherlandsIncrementalLearningfromNoisyDataJEFFREYC.SCHLIMMERRICHARDH.GRANGER,JR.(SCHLIMMER@ICS.UCI.EDU)(GRANGER@ICS.UCI.EDU)IrvineComputationalIntelligenceProject,DepartmentofInformation

2、andComputerScience,UniversityofCalifornia,Irvine,CA92717,U.S.A.(ReceivedMarch5,1986)(RevisedMay2,1986)Keywords:learningfromexamples,contingency,systematicnoise,conceptdrift,constructiveinductionAbstract.Inductionofaconceptdescriptiongivennoisyinstancesisdifficultandisfu

3、rtherexacerbatedwhentheconceptsmaychangeovertime.Thispaperpresentsasolutionwhichhasbeenguidedbypsychologicalandmathematicalresults.Themethodisbasedonadistributedconceptdescriptionwhichiscomposedofasetofweighted,symboliccharacterizations.Twolearningprocessesincrementally

4、modifythisdescription.Oneadjuststhecharacterizationweightsandanothercreatesnewcharacteriza-tions.Thelatterprocessisdescribedintermsofasearchthroughthespaceofpossibilitiesandisshowntorequirelinearspacewithrespecttothenumberofattribute-valuepairsinthedescriptionlanguage.T

5、hemethodutilizespreviouslyacquiredconceptdefinitionsinsubsequentlearningbyaddinganattributeforeachlearnedconcepttoinstancedescriptions.AprogramcalledSTAGGERfullyembodiesthismethod,andthispaperreportsonanumberofempiricalanalysesofitsperformance.Sinceunderstandingtherelat

6、ionshipsbetweenanewlearningmethodandexistingonescanbedifficult,thispaperfirstreviewsaframeworkfordiscussingmachinelearningsystemsandthendescribesSTAGGERinthatframework.1.IntroductionTheabilitytoadapttotheenvironmentisanessentialqualityforanyintelligentmechanism.Fordomai

7、nsinwhichlearnershaveextensivepreviousknowledge,suchaselectronics,itisappropriatetoviewlearningasbeingheavilyguidedbythatpriorknowledge.However,indomainsinwhichtherearenohigh-qualitytheories,suchasweatherorfinancialprediction,somefundamentalmethodsmustbeusedtoguidelearn

8、ing.Thispaperinvestigatesabottom-uplearningtechniquewhichdoesnotrelyonastrongdomaintheory.Thespecificclassofle

當(dāng)前文檔最多預(yù)覽五頁(yè),下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁(yè),下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動(dòng)畫的文件,查看預(yù)覽時(shí)可能會(huì)顯示錯(cuò)亂或異常,文件下載后無(wú)此問(wèn)題,請(qǐng)放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫(kù)負(fù)責(zé)整理代發(fā)布。如果您對(duì)本文檔版權(quán)有爭(zhēng)議請(qǐng)及時(shí)聯(lián)系客服。
3. 下載前請(qǐng)仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進(jìn)行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時(shí)可能由于網(wǎng)絡(luò)波動(dòng)等原因無(wú)法下載或下載錯(cuò)誤,付費(fèi)完成后未能成功下載的用戶請(qǐng)聯(lián)系客服處理。