The US Housing Market - Asset Pricing Forecasts Using Time Varying Coefficients

The US Housing Market - Asset Pricing Forecasts Using Time Varying Coefficients

ID:40104590

大?。?.28 MB

頁(yè)數(shù):22頁(yè)

時(shí)間:2019-07-21

The US Housing Market - Asset Pricing Forecasts Using Time Varying Coefficients _第1頁(yè)
The US Housing Market - Asset Pricing Forecasts Using Time Varying Coefficients _第2頁(yè)
The US Housing Market - Asset Pricing Forecasts Using Time Varying Coefficients _第3頁(yè)
The US Housing Market - Asset Pricing Forecasts Using Time Varying Coefficients _第4頁(yè)
The US Housing Market - Asset Pricing Forecasts Using Time Varying Coefficients _第5頁(yè)
資源描述:

《The US Housing Market - Asset Pricing Forecasts Using Time Varying Coefficients 》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫(kù)

1、TheJournalofRealEstateFinanceandEconomics,30:1,33–53,2005#2005SpringerSciences+BusinessMedia,Inc.ManufacturedinTheNetherlands.TheUSHousingMarket:AssetPricingForecastsUsingTimeVaryingCoefficientsHANYS.GUIRGUISManhattanCollege,Riverdale,NY,USAE-mail:hany.guirguis@manhattan.eduCHRISTOSI.GIANNIKOSCol

2、umbiaBusinessSchool,ColumbiaUniversityandBaruchCollege,TheCityUniversityofNewYork,NY,USARANDYI.ANDERSONCollegeofBusinessAdministration,FloridaInternationalUniversity,Miami,FL,USAAbstractTheUShousingmarkethasexperiencedsignificantcyclicalvolatilityoverthelasttwenty-fiveyearsduetomajorstructuralcha

3、ngesandeconomicfluctuations.Inaddition,thehousingmarketisgenerallyconsideredtobeweakforminefficient.Housesarerelativelyilliquid,exceptionallyheterogeneous,andareassociatedwithlargetransactionscosts.Assuch,pastresearchhasshownthatitispossibletopredict,atleastpartially,thetimepathofhousingprices.Th

4、eabilitytopredicthousingpricesisimportantsuchthatinvestorscanmakebetterassetallocationdecisions,includingthepricingandunderwritingofmortgages.MostofthepriorstudiesexaminingtheUShousingmarkethaveemployedconstantcoefficientapproachestoforecasthousepricemovements.However,thisapproachisnotoptimalasan

5、examinationofdatarevealssubstantialsub-sampleparameterinstability.Toaccountfortheparameterinstability,weemployalternativeestimationmethodologieswheretheestimatedparametersareallowedtovaryovertime.TheresultsprovidestrongempiricalevidenceinfavorofutilizingtherollingGeneralizedAutoregressiveConditio

6、nalHeteroskedastic(GARCH)ModelandtheKalmanFilterwithanAutoregressivePresentation(KAR)fortheparameters’timevariation.Lastly,weprovideout-of-sampleforecastsanddemonstratetheprecisionofourapproach.KeyWords:houseprices,Kalmanfilter,rollingGARCH,rollingVECM1.Introduction1.1.OverviewBothacademicsandpra

7、ctitionersareinterestedinunderstandingthedynamicsofthehousingmarketduetoitssignificantimpactonthewholeeconomy.Infact,thehousingsectorconstitutesasignificantshareoftheGDPanditisthelargestcomponentofhouseholdwealthintheU

當(dāng)前文檔最多預(yù)覽五頁(yè),下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁(yè),下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動(dòng)畫(huà)的文件,查看預(yù)覽時(shí)可能會(huì)顯示錯(cuò)亂或異常,文件下載后無(wú)此問(wèn)題,請(qǐng)放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫(kù)負(fù)責(zé)整理代發(fā)布。如果您對(duì)本文檔版權(quán)有爭(zhēng)議請(qǐng)及時(shí)聯(lián)系客服。
3. 下載前請(qǐng)仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進(jìn)行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時(shí)可能由于網(wǎng)絡(luò)波動(dòng)等原因無(wú)法下載或下載錯(cuò)誤,付費(fèi)完成后未能成功下載的用戶請(qǐng)聯(lián)系客服處理。