資源描述:
《Bayesian Information Recovery from CNN for Probabilistic Inference》由會員上傳分享,免費在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫。
1、2018IEEE/RSJInternationalConferenceonIntelligentRobotsandSystems(IROS)Madrid,Spain,October1-5,2018BayesianInformationRecoveryfromCNNforProbabilisticInferenceDmitryKopitkovandVadimIndelmanAbstract—Typicalinferenceapproachesthatworkwithhigh-dimensionalvisu
2、almeasurementsusehand-engineeredimagefeatures(e.g.SIFT)thatrequirecombinatorialdataassociation,orpredictonlyhiddenstatemeanwithoutconsideringitsuncertaintyandmulti-modalityaspects.WedevelopanovelapproachtoinfersystemhiddenstatefromvisualobservationsviaCN
3、NfeatureswhichareoutputsofaCNNclassi?er.Tothatend,atpre-deploymentstageweuseneuralnetworksto(a)learnagenerativeviewpoint-dependentmodelofCNNfeaturesgiventherobotposeandapproximatethismodelbyaspatially-varyingGaussiandistribution.Further,atdeploymentthism
4、odelisutilizedwithinaBayesianframeworkforproba-bilisticinference,consideringarobotlocalizationproblem.Ourmethoddoesnotinvolvedataassociationandprovidesuncertaintycovarianceofthe?nalestimation.Moreover,weshowempiricallythattheCNNfeaturelikelihoodisunimoda
5、lwhichsimpli?estheinferencetask.WetestourmethodinasimulatedUnrealEngineenvironment,wherewesucceedtoretrievehigh-levelstateinformationfromCNNfeaturesandproducetrajectoryestimationwithhighaccuracy.Additionally,weanalyzerobustnessofourapproachtodifferentlig
6、htconditions.I.INTRODUCTIONInferringasystemstatefrommultiplemeasurements,pos-siblycapturedbydifferentsensors,isafundamentalproblem(b)Fig.1:Approachoverview.InthispaperweuseCNNfeaturesforrobot’sstateinrobotics.Bayesianinferenceforsystemidenti?cationisinfe
7、rencewithinaBayesianframework.Animagecapturedfromrobotposexioneofthemainbuildingblocksonwhichmodernreal-ispassedtoaCNNclassi?erwhichproducesafeaturesvectorfithatrepresentstheimage.(a)Duringthepre-deploymentstagewelearnspatially-varyingCNNworldroboticappl
8、icationsrely,suchasautonomousnavi-probabilitylikelihoodP(fijxi)approximatedbyN((xi);(xi)).Twoneuralgationandsimultaneouslocalizationandmapping(SLAM).networksproduceviewpoint-dependentmeanandcovariancefunctionsoffigivenxi