Localization of Wireless Sensors using

Localization of Wireless Sensors using

ID:40390505

大?。?63.19 KB

頁(yè)數(shù):5頁(yè)

時(shí)間:2019-08-01

Localization of Wireless Sensors using_第1頁(yè)
Localization of Wireless Sensors using_第2頁(yè)
Localization of Wireless Sensors using_第3頁(yè)
Localization of Wireless Sensors using_第4頁(yè)
Localization of Wireless Sensors using_第5頁(yè)
資源描述:

《Localization of Wireless Sensors using》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫(kù)。

1、LocalizationofWirelessSensorsusing1CompressiveSensingforManifoldLearningChenFeng1,2,ShahrokhValaee1,ZhenhuiTan21DepartmentofElectricalandComputerEngineering,UniversityofToronto2StateKeyLaboratoryofRailTraf?cControlandSafety,BeijingJiaotongUniversityEmail:{chenfeng,valaee}@co

2、mm.utoronto.ca,zhhtan@center.njtu.edu.cnAbstractInthispaper,anovelcompressivesensingwithothermeasurement-basedalgorithms(e.g,time-of-formanifoldlearningprotocol(CSML)isproposedforarrival(TOA)orangle-of-arrival(AOA)measurementslocalizationinwirelesssensornetworks(WSNs).Inter-

3、ofultra-wideband(UWB)[6]),ML-basedalgorithmssensorcommunicationcostsarereducedsigni?cantlybyavoidexpensivedevices,sincetheonlyrequirementforapplyingthetheoryofcompressivesensing,whichindicatesthatsparsesignalscanberecoveredfromfarfewersampleslearninginacentralnodeispair-wise

4、measurements,thanthatneededbytheNyquistsamplingtheorem.Wewhichcouldbeanyofthephysicalreadingsthatindicaterepresentthepair-wisedistancemeasurementasasparsedistanceinformationamongsensors,suchasthereceivedmatrix.Insteadofsendingfullpair-wisemeasurementsignalstrength(RSS)ortheh

5、op-count.However,withdatatoacentralnode,eachsensortransmitsonlyatheincreasingnumberofsensornodes,thescaleofpair-smallnumberofcompressivemeasurements.Andthefullpair-wisedistancematrixcanbewellreconstructedfromwisemeasurementsbecomesverylarge.Communicationthesenoisycompressive

6、measurementsinthecentralnode,costbetweeneachsensornodeandthecentralnodeisaonlythroughan?1-minimizationalgorithm.Theproposedbottleneckinthesecases.Patwarietal.[7]showedthemethodreducestheoverallcommunicationbandwidthre-accuracyandrobustnessofMLalgorithms,butneglectedquirement

7、persensorsuchthatitincreaseslogarithmicallythelargecommunicationcostswhenobtainingthepair-withthenumberofsensorsandlinearlywiththenumberofneighbors,whileachieveshighlocalizationaccuracy.wisemeasurementsbyassumingthemtobeknown.CSMLisespeciallysuitableformanifoldlearningbasedI

8、n[8],ithasbeenrealizedthat,withthehelplocalizationalgorithms.Simulationresu

當(dāng)前文檔最多預(yù)覽五頁(yè),下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁(yè),下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動(dòng)畫(huà)的文件,查看預(yù)覽時(shí)可能會(huì)顯示錯(cuò)亂或異常,文件下載后無(wú)此問(wèn)題,請(qǐng)放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫(kù)負(fù)責(zé)整理代發(fā)布。如果您對(duì)本文檔版權(quán)有爭(zhēng)議請(qǐng)及時(shí)聯(lián)系客服。
3. 下載前請(qǐng)仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進(jìn)行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時(shí)可能由于網(wǎng)絡(luò)波動(dòng)等原因無(wú)法下載或下載錯(cuò)誤,付費(fèi)完成后未能成功下載的用戶請(qǐng)聯(lián)系客服處理。