MIT18_06SCF11_Ses2.11Markov Matrices; Fourier Series

MIT18_06SCF11_Ses2.11Markov Matrices; Fourier Series

ID:40640532

大?。?41.17 KB

頁數(shù):5頁

時(shí)間:2019-08-05

MIT18_06SCF11_Ses2.11Markov Matrices; Fourier Series_第1頁
MIT18_06SCF11_Ses2.11Markov Matrices; Fourier Series_第2頁
MIT18_06SCF11_Ses2.11Markov Matrices; Fourier Series_第3頁
MIT18_06SCF11_Ses2.11Markov Matrices; Fourier Series_第4頁
MIT18_06SCF11_Ses2.11Markov Matrices; Fourier Series_第5頁
資源描述:

《MIT18_06SCF11_Ses2.11Markov Matrices; Fourier Series》由會員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫。

1、Markovmatrices;FourierseriesInthislecturewelookatMarkovmatricesandFourierseries–twoapplicationsofeigenvaluesandprojections.EigenvaluesofATTheeigenvaluesofAandtheeigenvaluesofATarethesame:(A?λI)T=AT?λI,soproperty10ofdeterminantstellsusthatdet(A?λI)=det(AT?λI).Ifλisaneigenv

2、alueofAthendet(AT?λI)=0andλisalsoaneigenvalueofAT.MarkovmatricesAmatrixlike:??.1.01.3A=?.2.99.3?.70.4inwhichallentriesarenon-negativeandeachcolumnaddsto1iscalledaMarkovmatrix.TheserequirementscomefromMarkovmatrices’useinprobability.SquaringorraisingaMarkovmatrixtoapowergi

3、vesusanotherMarkovmatrix.Whendealingwithsystemsofdifferentialequations,eigenvectorswiththeeigenvalue0representedsteadystates.Herewe’redealingwithpowersofmatricesandgetasteadystatewhenλ=1isaneigenvalue.Theconstraintthatthecolumnsaddto1guaranteesthat1isaneigenvalue.Allother

4、eigenvalueswillbelessthan1.Rememberthat(ifAhasnindependenteigenvectors)thesolutiontouk=Aku0isuk=c1λkx1+c2λkx2+···+12cnλknxn.Ifλ1=1andallotherseigenvaluesarelessthanonethesystemapproachesthesteadystatec1x1.Thisisthex1componentofu0.Whydoesthefactthatthecolumnssumto1guarante

5、ethat1isaneigenvalue?If1isaneigenvalueofA,then:???.9.01.3A?1I=?.2?.01.3?.70?.6shouldbesingular.Sincewe’vesubtracted1fromeachdiagonalentry,thesumoftheentriesineachcolumnofA?Iiszero.ButthenthesumoftherowsofA?Imustbethezerorow,andsoA?Iissingular.Theeigenvectorx1isinthe??.6nu

6、llspaceofA?Iandhaseigenvalue1.It’snotveryhardto?ndx1=33..71We’restudyingtheequationuk+1=AukwhereAisaMarkovmatrix.Forexampleu1mightbethepopulationof(numberofpeoplein)Massachusettsandu2mightbethepopulationofCalifornia.Amightdescribewhatfractionofthepopulationmovesfromstatet

7、ostate,ortheprobabilityofasinglepersonmoving.Wecan’thavenegativenumbersofpeople,sotheentriesofAwillalwaysbepositive.Wewanttoaccountforallthepeopleinourmodel,sothecolumnsofAaddto1=100%.Forexample:??????uCal.9.2uCal=uMasst=k+1.1.8uMasst=kassumesthatthere’sa90%chancethataper

8、soninCaliforniawillstayinCaliforniaandonlya10%chancethatsheorhewillmove,whilethere’sa20%percentc

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動畫的文件,查看預(yù)覽時(shí)可能會顯示錯亂或異常,文件下載后無此問題,請放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫負(fù)責(zé)整理代發(fā)布。如果您對本文檔版權(quán)有爭議請及時(shí)聯(lián)系客服。
3. 下載前請仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進(jìn)行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時(shí)可能由于網(wǎng)絡(luò)波動等原因無法下載或下載錯誤,付費(fèi)完成后未能成功下載的用戶請聯(lián)系客服處理。