Deformable Part Models are Convolutional Neural Networks

Deformable Part Models are Convolutional Neural Networks

ID:40714217

大?。?13.21 KB

頁(yè)數(shù):10頁(yè)

時(shí)間:2019-08-06

Deformable Part Models are Convolutional Neural Networks_第1頁(yè)
Deformable Part Models are Convolutional Neural Networks_第2頁(yè)
Deformable Part Models are Convolutional Neural Networks_第3頁(yè)
Deformable Part Models are Convolutional Neural Networks_第4頁(yè)
Deformable Part Models are Convolutional Neural Networks_第5頁(yè)
資源描述:

《Deformable Part Models are Convolutional Neural Networks》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫(kù)。

1、DeformablePartModelsareConvolutionalNeuralNetworksRossGirshick1ForrestIandola2TrevorDarrell2JitendraMalik21MicrosoftResearch2UCBerkeleyrbg@microsoft.comfforresti,trevor,malikg@eecs.berkeley.eduAbstractCNN.Inotherwords,deformablepartmodelsareconvo-lutionalneuralnetworks.Ourconstructionrelieso

2、nanewDeformablepartmodels(DPMs)andconvolutionalneu-networklayer,distancetransformpooling,whichgeneral-ralnetworks(CNNs)aretwowidelyusedtoolsforvi-izesmaxpooling.sualrecognition.Theyaretypicallyviewedasdistinctap-DPMstypicallyoperateonascale-spacepyramidofgra-proaches:DPMsaregraphicalmodels(M

3、arkovrandomdientorientationfeaturemaps(HOG[5]).Butwenow?elds),whileCNNsare“black-box”non-linearclassi?ers.knowthatforobjectdetectionthisfeaturerepresentationisInthispaper,weshowthataDPMcanbeformulatedasasuboptimalcomparedtofeaturescomputedbydeepcon-CNN,thusprovidingasynthesisofthetwoideas.Ou

4、rcon-volutionalnetworks[17].Asasecondinnovation,were-structioninvolvesunrollingtheDPMinferencealgorithmplaceHOGwithfeatureslearnedbyafully-convolutionalandmappingeachsteptoanequivalentCNNlayer.Fromnetwork.This“front-end”networkgeneratesapyramidofthisperspective,itisnaturaltoreplacethestandar

5、dim-deepfeatures,analogoustoaHOGfeaturepyramid.WeagefeaturesusedinDPMswithalearnedfeatureextractor.callthefullmodelaDeepPyramidDPM.WecalltheresultingmodelaDeepPyramidDPMandex-WeexperimentallyvalidateDeepPyramidDPMsbyperimentallyvalidateitonPASCALVOCobjectdetection.measuringobjectdetectionper

6、formanceonPASCALVOCWe?ndthatDeepPyramidDPMssigni?cantlyoutperform[9].SincetraditionalDPMshavebeentunedforHOGfea-DPMsbasedonhistogramsoforientedgradientsfeaturesturesovermanyyears,we?rstanalyzethedifferencesbe-(HOG)andslightlyoutperformsacomparableversionoftweenHOGfeaturepyramidsanddeepfeatur

7、epyramids.therecentlyintroducedR-CNNdetectionsystem,whilerun-WethenselectagoodmodelstructureandtrainaDeep-ningsigni?cantlyfaster.PyramidDPMthatsigni?cantlyoutperformsthebestHOG-basedDPMs.Whilewedon’texpectourapproachtoout-performa?ne-tunedR-CNNdete

當(dāng)前文檔最多預(yù)覽五頁(yè),下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁(yè),下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動(dòng)畫的文件,查看預(yù)覽時(shí)可能會(huì)顯示錯(cuò)亂或異常,文件下載后無此問題,請(qǐng)放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫(kù)負(fù)責(zé)整理代發(fā)布。如果您對(duì)本文檔版權(quán)有爭(zhēng)議請(qǐng)及時(shí)聯(lián)系客服。
3. 下載前請(qǐng)仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進(jìn)行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時(shí)可能由于網(wǎng)絡(luò)波動(dòng)等原因無法下載或下載錯(cuò)誤,付費(fèi)完成后未能成功下載的用戶請(qǐng)聯(lián)系客服處理。