Information from street view imagery

Information from street view imagery

ID:40719008

大?。?.88 MB

頁數(shù):7頁

時間:2019-08-06

Information from street view imagery_第1頁
Information from street view imagery_第2頁
Information from street view imagery_第3頁
Information from street view imagery_第4頁
Information from street view imagery_第5頁
資源描述:

《Information from street view imagery》由會員上傳分享,免費在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫。

1、Attention-basedExtractionofStructuredInformationfromStreetViewImageryZbigniewWojnaAlexGorbanyDar-ShyangLeeyKevinMurphyyQianYuyYeqingLiyJulianIbarzyUniversityCollegeLondonyGoogleInc.Abstract—Wepresentaneuralnetworkmodel—basedonFinally,westudytheaccuracyandspeedofusin

2、g3differ-CNNs,RNNsandanovelattentionmechanism—whichachievesentCNN-basedfeatureextractors(namelyinception-v2[9],84.2%accuracyonthechallengingFrenchStreetNameSignsinception-v3[10]andinception-resnet-v2[10])asinputto(FSNS)dataset,signi?cantlyoutperformingthepreviousstate

3、ourattentionmodel.We?ndthatinception-v3andinception-oftheart(Smith’16),whichachieved72.46%.Furthermore,ournewmethodismuchsimplerandmoregeneralthantheresnet-v2performcomparably,andbothsigni?cantlyoutper-previousapproach.Todemonstratethegeneralityofourmodel,forminceptio

4、n-v2.Motivatedbytheneedforspeed,wealsoweshowthatitalsoperformswellonanevenmorechallengingstudytheeffectofusing“ablated”versionsofthesemodels,datasetderivedfromGoogleStreetView,inwhichthegoaliswhichusefewerlayers.Interestingly,we?ndthatforallthreetoextractbusinessnames

5、fromstorefronts.Finally,westudynetworks,theaccuracyinitiallyincreaseswithdepth,butthenthespeed/accuracytradeoffthatresultsfromusingCNNfeatureextractorsofdifferentdepths.Surprisingly,we?ndthatdeeperstartstodecrease.Thisisincontrasttomodelstrainedontheisnotalwaysbetter(

6、intermsofaccuracy,aswellasspeed).ILSVRCImagenetdataset[11],whichiscomparableinsizeOurresultingmodelissimple,accurateandfast,allowingittoFSNS.Forimageclassi?cation,accuracytendstoincreasetobeusedatscaleonavarietyofchallengingreal-worldtextwithdepthmonotonically.Webelie

7、vethedifferenceisthatextractionproblems.imageclassi?cationneedsverycomplicatedfeatures,whichI.INTRODUCTIONarespatiallyinvariant,whereas,fortextextraction,ithurtstoTextrecognitioninanunconstrainednaturalenvironmentisusetousesuchfeatures.achallengingcomputervisionandmac

8、hinelearningproblem.Insummary,ourcontributionsareasfollows:(1)WepresentTraditionalOpticalCharacterRecognition(OCR)systemsano

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動畫的文件,查看預(yù)覽時可能會顯示錯亂或異常,文件下載后無此問題,請放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫負(fù)責(zé)整理代發(fā)布。如果您對本文檔版權(quán)有爭議請及時聯(lián)系客服。
3. 下載前請仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時可能由于網(wǎng)絡(luò)波動等原因無法下載或下載錯誤,付費完成后未能成功下載的用戶請聯(lián)系客服處理。