Markov chain Monte Carlo in action- a tutorial

Markov chain Monte Carlo in action- a tutorial

ID:40720829

大?。?34.56 KB

頁數(shù):4頁

時間:2019-08-06

Markov chain Monte Carlo in action- a tutorial_第1頁
Markov chain Monte Carlo in action- a tutorial_第2頁
Markov chain Monte Carlo in action- a tutorial_第3頁
Markov chain Monte Carlo in action- a tutorial_第4頁
資源描述:

《Markov chain Monte Carlo in action- a tutorial》由會員上傳分享,免費在線閱讀,更多相關內容在學術論文-天天文庫

1、MarkovchainMonteCarloinaction:atutorialPeterJ.GreenUniversityofBristol,DepartmentofMathematics,Bristol,BS81TW,UK.P.J.Green@bristol.ac.uk1.IntroductionMarkovchainMonteCarloisprobablyabout50yearsold,andhasbeenbothdevelopedandextensivelyusedinphysicsforthelastfourdecades.However,themostspectacularinc

2、reaseinitsimpactandin uenceinstatisticsandprobabilityhascomesincethelate'80's.Ithasnowcometobeanall-pervadingtechniqueinstatisticalcomputation,inparticularforBayesianinference,andespeciallyincomplexstochasticsystems.2.Cyclonesexample:pointprocessesandchangepointsWewillillustratetheideasofMCMCwitha

3、runningexample:theobservationsareapointprocessofeventsattimesy;y;:::;yinaninterval[0;L).Wesupposetheeventsoccurasa12NPoissonprocess

4、butatapossiblynon-uniformrate:sayx(t)perunittime,attimet;wewishtomakeinferenceaboutx(t).Weconsideraseriesofmodels,ultimatelyallowinganunknownnumberofchangepoints,unkn

5、ownhyperparameters,andaparametricperiodiccomponent.ThemodelsandtherespectivealgorithmsandinferenceswillbeillustratedbyananalysisofadatasetofthetimesofcycloneshittingtheBayofBengal;therewere141cyclonesoveraperiodof100years.Model1:constantrate.Firstsupposethatx(t)xforallt.Thenthetimesoftheeventsare

6、immaterial:weobserveNeventsinatimeintervaloflengthL;theobviousestimateofxNbisx=,themaximumlikelihoodestimatorofxundertheassumptionthatNhasaPoissonLdistribution,withmeanxL.Model2:constantrate,theBayesianway.ForaBayesianapproachtothisexample,supposethatwehavepriorinformationaboutx(frompreviousstudie

7、s,forexample).Supposewecanmodelthisbyx,( ;):Thenwe ndthataposteriorixhasaGammadistributionwithmean(+N)=(+L),orapproximatelyN=LifNandLarelargecomparedwithand.Thuswithalotofdata,theBayesianposteriormeanisclosetothemaximumlikelihoodestimator.ThereisnoneedforMCMCinthismodel:youcancalculatetheposterio

8、rexactly,andrecogniseitasastandarddistribution;itonlyworkedlikethisbecauseweusedaconjugateprior.Model3:constantrate,withhyperparameter.Supposeyouarereluctanttospecifyyourpriorfully:youarehappytosayx,( ;)andcansp

當前文檔最多預覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當前文檔最多預覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學公式或PPT動畫的文件,查看預覽時可能會顯示錯亂或異常,文件下載后無此問題,請放心下載。
2. 本文檔由用戶上傳,版權歸屬用戶,天天文庫負責整理代發(fā)布。如果您對本文檔版權有爭議請及時聯(lián)系客服。
3. 下載前請仔細閱讀文檔內容,確認文檔內容符合您的需求后進行下載,若出現(xiàn)內容與標題不符可向本站投訴處理。
4. 下載文檔時可能由于網(wǎng)絡波動等原因無法下載或下載錯誤,付費完成后未能成功下載的用戶請聯(lián)系客服處理。