SAS Markov Chain Monte Carlo (MCMC) Simulation in Practice

SAS Markov Chain Monte Carlo (MCMC) Simulation in Practice

ID:40725346

大?。?.12 MB

頁(yè)數(shù):20頁(yè)

時(shí)間:2019-08-06

SAS Markov Chain Monte Carlo (MCMC) Simulation in Practice_第1頁(yè)
SAS Markov Chain Monte Carlo (MCMC) Simulation in Practice_第2頁(yè)
SAS Markov Chain Monte Carlo (MCMC) Simulation in Practice_第3頁(yè)
SAS Markov Chain Monte Carlo (MCMC) Simulation in Practice_第4頁(yè)
SAS Markov Chain Monte Carlo (MCMC) Simulation in Practice_第5頁(yè)
資源描述:

《SAS Markov Chain Monte Carlo (MCMC) Simulation in Practice》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫(kù)

1、PaperSP07?SASMarkovChainMonteCarlo(MCMC)SimulationinPracticeScottDPatterson,GlaxoSmithKline,KingofPrussia,PAShi-TaoYeh,GlaxoSmithKline,KingofPrussia,PAABSTRACTMarkovChainMonteCarlo(MCMC)isarandomsamplingmethodwithMonteCarlointegrationusingMarkovchains.MCMChasgainedpopularityinmanyapplicationsduetoth

2、eadvancementofcomputationalalgorithms?andpower.TheSASMIProcedureprovidesMCMCmethodforfillingarbitrarymissingdataandforsimulatingrandomsamplesbasedoncompletedatainformation.ExtensionsofthisprocedurearecurrentlyavailableinexperimentalformtoperformBayesianstatisticalanalysis.Thepurposeofthispaperistous

3、easimulatedhypotheticalclinicaltrialefficacydatasetandChallenger’sO-ringfailuredataasinputinordertoperformtheMCMCmethodformissingdataimputation,modelparametersimulation,andmodeldiagnostics,andtouseSAStoperformaBayesiananalysisofdatacommonlyencounteredinclinicaltrials.????TheSASV9productsusedinthispa

4、perareSASBASE,SAS/STAT,andSAS/GRAPHonaPCWindowsplatform.INTRODUCTIONMonteCarlomethodsaresamplingtechniquesthatdrawpseudo-randomsamplesfromspecifiedprobabilitydistributions.Inotherwords,MonteCarlomethodsarenumericalmethodsthatutilizesequencenumbersofrandomnumberstoperformstatisticalsimulations.AMonte

5、Carloalgorithminvolvesthefollowingcomponents:1)probabilitydistributionfunctions(pdf’s)–thetargetdistributionmustbespecifiedbyasetofpdf’s,2)randomnumbergenerator–asourceofrandomnumbersuniformlydistributedontheunitinterval,3)samplingrule–aprescriptionforsamplingfromthespecifiedpdf’s,4)scoring–theoutco

6、mesmustbesummarizedintooverallscores,5)errorestimation–anestimateofthestatisticalerror(variance)asafunctionofthenumberoftrials,6)variancereductiontechniques–methodsforreducingthevarianceintheestimatedsolutiontoreducethecomputationaltime,7)parallelizationandvectorization–analgorithmtoallowMonteCarlom

7、ethodstobeimplementedefficientlyoncomputercomputation.Forindependentsamples,thesimulationoutcomescanapply‘LawofLargeNumbers’.ButindependentsamplingfromMonteCarlomethodsmaybedifficult.Theissueofindepen

當(dāng)前文檔最多預(yù)覽五頁(yè),下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁(yè),下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動(dòng)畫的文件,查看預(yù)覽時(shí)可能會(huì)顯示錯(cuò)亂或異常,文件下載后無(wú)此問題,請(qǐng)放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫(kù)負(fù)責(zé)整理代發(fā)布。如果您對(duì)本文檔版權(quán)有爭(zhēng)議請(qǐng)及時(shí)聯(lián)系客服。
3. 下載前請(qǐng)仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進(jìn)行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時(shí)可能由于網(wǎng)絡(luò)波動(dòng)等原因無(wú)法下載或下載錯(cuò)誤,付費(fèi)完成后未能成功下載的用戶請(qǐng)聯(lián)系客服處理。