2014-ICLR-OverFeat_ Integrated Recognition, Localization and Detection using Convolutional Networks

2014-ICLR-OverFeat_ Integrated Recognition, Localization and Detection using Convolutional Networks

ID:40877114

大小:915.86 KB

頁數(shù):16頁

時間:2019-08-09

2014-ICLR-OverFeat_ Integrated Recognition, Localization and Detection using Convolutional Networks_第1頁
2014-ICLR-OverFeat_ Integrated Recognition, Localization and Detection using Convolutional Networks_第2頁
2014-ICLR-OverFeat_ Integrated Recognition, Localization and Detection using Convolutional Networks_第3頁
2014-ICLR-OverFeat_ Integrated Recognition, Localization and Detection using Convolutional Networks_第4頁
2014-ICLR-OverFeat_ Integrated Recognition, Localization and Detection using Convolutional Networks_第5頁
資源描述:

《2014-ICLR-OverFeat_ Integrated Recognition, Localization and Detection using Convolutional Networks》由會員上傳分享,免費在線閱讀,更多相關內容在學術論文-天天文庫

1、OverFeat:IntegratedRecognition,LocalizationandDetectionusingConvolutionalNetworksPierreSermanetDavidEigenXiangZhangMichaelMathieuRobFergusYannLeCunCourantInstituteofMathematicalSciences,NewYorkUniversity719Broadway,12thFloor,NewYork,NY10003sermanet,deigen,xiang,mat

2、hieu,fergus,yann@cs.nyu.eduAbstractWepresentanintegratedframeworkforusingConvolutionalNetworksforclassi-?cation,localizationanddetection.Weshowhowamultiscaleandslidingwindowapproachcanbeef?cientlyimplementedwithinaConvNet.Wealsointroduceanoveldeeplearningapproachto

3、localizationbylearningtopredictobjectbound-aries.Boundingboxesarethenaccumulatedratherthansuppressedinordertoincreasedetectioncon?dence.Weshowthatdifferenttaskscanbelearnedsimul-taneouslyusingasinglesharednetwork.Thisintegratedframeworkisthewinnerofthelocalizationt

4、askoftheImageNetLargeScaleVisualRecognitionChallenge2013(ILSVRC2013)andobtainedverycompetitiveresultsforthedetectionandclassi?cationstasks.Inpost-competitionwork,weestablishanewstateoftheartforthedetectiontask.Finally,wereleaseafeatureextractorfromourbestmodelcalle

5、dOverFeat.1IntroductionRecognizingthecategoryofthedominantobjectinanimageisataskstowhichConvolutionalarXiv:1312.6229v4[cs.CV]24Feb2014Networks(ConvNets)[17]havebeenappliedformanyyears,whethertheobjectswerehandwrittencharacters[16],housenumbers[24],texturelesstoys[1

6、8],traf?csigns[3,26],objectsfromtheCaltech-101dataset[14],orobjectsfromthe1000-categoryImageNetdataset[15].TheaccuracyofConvNetsonsmalldatasetssuchasCaltech-101,whiledecent,hasnotbeenrecord-breaking.However,theadventoflargerdatasetshasenabledConvNetstosigni?cantlya

7、dvancethestateoftheartondatasetssuchasthe1000-categoryImageNet[5].ThemainadvantageofConvNetsformanysuchtasksisthattheentiresystemistrainedendtoend,fromrawpixelstoultimatecategories,therebyalleviatingtherequirementtomanuallydesignasuitablefeatureextractor.Themaindis

8、advantageistheirravenousappetiteforlabeledtrainingsamples.Themainpointofthispaperistoshowthattrainingaconvolutionalnetworktosimultaneouslyclassif

當前文檔最多預覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當前文檔最多預覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學公式或PPT動畫的文件,查看預覽時可能會顯示錯亂或異常,文件下載后無此問題,請放心下載。
2. 本文檔由用戶上傳,版權歸屬用戶,天天文庫負責整理代發(fā)布。如果您對本文檔版權有爭議請及時聯(lián)系客服。
3. 下載前請仔細閱讀文檔內容,確認文檔內容符合您的需求后進行下載,若出現(xiàn)內容與標題不符可向本站投訴處理。
4. 下載文檔時可能由于網(wǎng)絡波動等原因無法下載或下載錯誤,付費完成后未能成功下載的用戶請聯(lián)系客服處理。