Object Detection Networks on Convolutional Feature Maps

Object Detection Networks on Convolutional Feature Maps

ID:40722447

大小:526.51 KB

頁數(shù):9頁

時間:2019-08-06

Object Detection Networks on Convolutional Feature Maps_第1頁
Object Detection Networks on Convolutional Feature Maps_第2頁
Object Detection Networks on Convolutional Feature Maps_第3頁
Object Detection Networks on Convolutional Feature Maps_第4頁
Object Detection Networks on Convolutional Feature Maps_第5頁
資源描述:

《Object Detection Networks on Convolutional Feature Maps》由會員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫

1、ObjectDetectionNetworksonConvolutionalFeatureMapsShaoqingRenKaimingHeRossGirshickXiangyuZhangJianSunMicrosoftResearchfv-shren,kahe,rbg,v-xiangz,jiansung@microsoft.comAbstractasaconvolutionalfeatureextractor,endingatthelastpool-inglayer,followedbyamulti-layerperceptron(MLP).ToMostobjectdet

2、ectorscontaintwoimportantcompo-date,evenwhenextratrainingdataareusedbytraditionalnents:afeatureextractorandanobjectclassi?er.Themethods[34],theystilltrailfarbehinddeepConvNetsonfeatureextractorhasrapidlyevolvedwithsigni?cantre-detectionbenchmarks.searcheffortsleadingtobetterdeepConvNetarc

3、hitectures.Oneresearchstream[24,11,29,36]attemptingtobridgeTheobjectclassi?er,however,hasnotreceivedmuchat-theperformancegapbetweentraditionaldetectorsanddeeptentionandmoststate-of-the-artsystems(likeR-CNN)useConvNetscreatesahybridofthetwo:thefeatureextractorsimplemulti-layerperceptrons.T

4、hispaperdemonstratesis“upgraded”toapre-traineddeepConvNet,buttheclassi-thatcarefullydesigningdeepnetworksforobjectclassi?-?erisleftasatraditionalmodel,suchasaDPM[24,11,29]cationisjustasimportant.Wetakeinspirationfromtradi-oraboostedclassi?er[36].Thesehybridapproachesout-tionalobjectclassi

5、?ers,suchasDPM,andexperimentwithperformtheirHOG/SIFT/LBP-basedcounterparts[8,30],deepnetworksthathavepart-like?ltersandreasonoverbutstilllagfarbehindR-CNN,evenwhentheDPMislatentvariables.Wediscoverthatonpre-trainedconvolu-trainedend-to-endwithdeepConvNetfeatures[29].Inter-tionalfeaturemap

6、s,evenrandomlyinitializeddeepclassi-estingly,thedetectionaccuracyofthesehybridmethodsis?ersproduceexcellentresults,whiletheimprovementduetoclosetothatofR-CNNwhenusingalinearSVMonthelast?ne-tuningissecondary;onHOGfeatures,deepclassi?ersconvolutionalfeatures,withoutthefully-connectedlayers.

7、outperformDPMsandproducethebestHOG-onlyresultsTheSPPnetapproach[13]forobjectdetectionoccupieswithoutexternaldata.Webelievethese?ndingsprovideamiddlegroundbetweenthehybridmodelsandR-CNN.newinsightfordevelopingobjectdetectionsystems.OurSPPnet,likethehybridmodelsbutunl

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動畫的文件,查看預(yù)覽時可能會顯示錯亂或異常,文件下載后無此問題,請放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫負(fù)責(zé)整理代發(fā)布。如果您對本文檔版權(quán)有爭議請及時聯(lián)系客服。
3. 下載前請仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進(jìn)行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時可能由于網(wǎng)絡(luò)波動等原因無法下載或下載錯誤,付費(fèi)完成后未能成功下載的用戶請聯(lián)系客服處理。