Multi-Stage Multi-Recursive-Input Fully Convolutional Networks for Neuronal Boundary Detection

Multi-Stage Multi-Recursive-Input Fully Convolutional Networks for Neuronal Boundary Detection

ID:40721769

大?。?.31 MB

頁(yè)數(shù):10頁(yè)

時(shí)間:2019-08-06

Multi-Stage Multi-Recursive-Input Fully Convolutional Networks for Neuronal Boundary Detection_第1頁(yè)
Multi-Stage Multi-Recursive-Input Fully Convolutional Networks for Neuronal Boundary Detection_第2頁(yè)
Multi-Stage Multi-Recursive-Input Fully Convolutional Networks for Neuronal Boundary Detection_第3頁(yè)
Multi-Stage Multi-Recursive-Input Fully Convolutional Networks for Neuronal Boundary Detection_第4頁(yè)
Multi-Stage Multi-Recursive-Input Fully Convolutional Networks for Neuronal Boundary Detection_第5頁(yè)
Multi-Stage Multi-Recursive-Input Fully Convolutional Networks for Neuronal Boundary Detection_第6頁(yè)
Multi-Stage Multi-Recursive-Input Fully Convolutional Networks for Neuronal Boundary Detection_第7頁(yè)
Multi-Stage Multi-Recursive-Input Fully Convolutional Networks for Neuronal Boundary Detection_第8頁(yè)
Multi-Stage Multi-Recursive-Input Fully Convolutional Networks for Neuronal Boundary Detection_第9頁(yè)
Multi-Stage Multi-Recursive-Input Fully Convolutional Networks for Neuronal Boundary Detection_第10頁(yè)
資源描述:

《Multi-Stage Multi-Recursive-Input Fully Convolutional Networks for Neuronal Boundary Detection》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫(kù)。

1、Multi-stageMulti-recursive-inputFullyConvolutionalNetworksforNeuronalBoundaryDetectionWeiShen1,2,BinWang1,YuanJiang1?,YanWang2,AlanYuille21KeyLaboratoryofSpecialtyFiberOpticsandOpticalAccessNetworks,ShanghaiUniversity2DepartmentofComputerScience,JohnsHopkinsUniversitywei.shen@t.shu.edu

2、.cn,{wangbin418,jy9387}@outlook.com,{wyanny.9,alan.l.yuille}@gmail.comAbstractInthe?eldofconnectomics,neuroscientistsseektoi-dentifycorticalconnectivitycomprehensively.NeuronalboundarydetectionfromtheElectronMicroscopy(EM)im-agesisoftendonetoassisttheautomaticreconstructionofneuronalci

3、rcuit.ButthesegmentationofEMimagesisachallengingproblem,asitrequiresthedetectortobeable(a)(b)(c)todetectboth?lament-likethinandblob-likethickmem-Figure1.Neuronalstructuresegmentation:anEMimage(a)andthegroundtruthsforitsneuronalboundarydetectionresult(b)andbrane,whilesuppressingtheambig

4、uousintracellularstruc-segmentationresult(c),respectively.ture.Inthispaper,weproposemulti-stagemulti-recursive-inputfullyconvolutionalnetworkstoaddressthisproblem.Themultiplerecursiveinputsforonestage,i.e.,themulti-riousandevenimpractical[13],whichdrivesthedemandplesideoutputswithdiffe

5、rentreceptive?eldsizeslearnedforef?cientautomatedneuronalcircuitreconstructionap-fromthelowerstage,providemulti-scalecontextualbound-proaches.aryinformationfortheconsecutivelearning.Thisdesignisbiologically-plausible,asitlikesahumanvisualsystemSerialsectionEMproducesastackof2Dimagesbyc

6、ut-tocomparedifferentpossiblesegmentationsolutionstoad-tingsectionsofbraintissue.Duetotheanisotropicresolu-dresstheambiguousboundaryissue.Ourmulti-stagenet-tionsofin-planeandout-of-plane,mostneuronalcircuitre-worksaretrainedend-to-end.Itachievespromisingre-constructionapproachesfollowt

7、hefollowingpipeline:(1)sultsontwopublicavailableEMsegmentationdatasets,neuronalboundarydetectiononeach2Dimage,(2)neu-themousepiriformcortexdatasetandtheISBI2012EMronalstructuresegmentationbasedonthe2Dboundarydataset.map,and(3)linkingtheneuronalsegmentsacross2Dim-agesintoa3Dreconstruc

當(dāng)前文檔最多預(yù)覽五頁(yè),下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁(yè),下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動(dòng)畫(huà)的文件,查看預(yù)覽時(shí)可能會(huì)顯示錯(cuò)亂或異常,文件下載后無(wú)此問(wèn)題,請(qǐng)放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫(kù)負(fù)責(zé)整理代發(fā)布。如果您對(duì)本文檔版權(quán)有爭(zhēng)議請(qǐng)及時(shí)聯(lián)系客服。
3. 下載前請(qǐng)仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進(jìn)行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時(shí)可能由于網(wǎng)絡(luò)波動(dòng)等原因無(wú)法下載或下載錯(cuò)誤,付費(fèi)完成后未能成功下載的用戶請(qǐng)聯(lián)系客服處理。