Wavelet Neural Networks for Function Learning - 1995

Wavelet Neural Networks for Function Learning - 1995

ID:41237078

大?。?.14 MB

頁(yè)數(shù):13頁(yè)

時(shí)間:2019-08-20

Wavelet Neural Networks for Function Learning - 1995_第1頁(yè)
Wavelet Neural Networks for Function Learning - 1995_第2頁(yè)
Wavelet Neural Networks for Function Learning - 1995_第3頁(yè)
Wavelet Neural Networks for Function Learning - 1995_第4頁(yè)
Wavelet Neural Networks for Function Learning - 1995_第5頁(yè)
資源描述:

《Wavelet Neural Networks for Function Learning - 1995》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫(kù)。

1、IEEETRANSACTIONSONSIGNALPROCESSING,VOL.43,NO.6.JUNE19951485WaveletNeuralNetworksforFunctionLearningJunZhang,Member,IEEE,GilbertG.Walter,YuboMiao,andWanNgaiWayneLee,Member,IEEEAbshurct-Inthispaper,awavelet-basedneuralnetworkisnetworkscanbemucheasierthanMPLnetworks.Hence,describe

2、d.Thestructureofthisnetworkissimilartothatofthetherehasbeenconsiderableinterestintheimplementationofradialbasisfunction(RBF)network,exceptthatheretheradialRBFnetworks[3]-[5](alsoseethereferencesin[8])andthebasisfunctionsarereplacedbyorthonormalscalingfunctionsthattheoreticalana

3、lysisoftheirproperties,suchasapproximationarenotnecessarilyradial-symmetric.Theefficacyofthistypeofnetworkinfunctionlearningandestimationisdemonstratedabilityandconvergencerates[6]-[ti].throughtheoreticalanalysisandexperimentalresults.Inpartic-Fromthepointofviewoffunctionrepres

4、entation,anRBFular,ithasbeenshownthatthewaveletnetworkhasuniversalnetworkisaschemethatrepresentsafunctionofinterestbyandL2approximationpropertiesandisaconsistentfunctionusingmembersofafamilyofcompactly(orlocally)supportedestimator.Convergenceratesassociatedwiththesepropertiesba

5、sisfunctions.Thelocalityofthebasisfunctionsmakesareobtainedforcertainfunctionclasseswheretheratesavoidthe“curseofdimensionality.”Intheexperiments,thewavelettheIU3FnetworkmoresuitableinlearningfunctionswithnetworkperformedwellandcomparedfavorablytotheMLPlocalvariationsanddiscont

6、inuities.Furthermore,theRBFandRBFnetworks.networkscanrepresentanyfunctionthatisinthespacespannedbythefamilyofbasisfunctions.However,thebasisI.INTRODUCTIONfunctionsinthefamilyaregenerallynotorthogonalandareredundant.Thismeansthatforagivenfunction,itsRBFEVELOPINGMODELSfromobserve

7、ddata,orfunc-Dnetworkrepresentationisnotuniqueandisprobablynottionlearning,isafundamentalprobleminmanyfields,themostefficient.Inthiswork,wereplacethefamilyofsuchasstatisticaldataanalysis,signalprocessing,control,basisfunctionsfortheRBFnetworkbyanorthonormalbasis,forecasting,and

8、artificialintelligence.Thisproblemisalsonamely,thescal

當(dāng)前文檔最多預(yù)覽五頁(yè),下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁(yè),下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動(dòng)畫(huà)的文件,查看預(yù)覽時(shí)可能會(huì)顯示錯(cuò)亂或異常,文件下載后無(wú)此問(wèn)題,請(qǐng)放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫(kù)負(fù)責(zé)整理代發(fā)布。如果您對(duì)本文檔版權(quán)有爭(zhēng)議請(qǐng)及時(shí)聯(lián)系客服。
3. 下載前請(qǐng)仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進(jìn)行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時(shí)可能由于網(wǎng)絡(luò)波動(dòng)等原因無(wú)法下載或下載錯(cuò)誤,付費(fèi)完成后未能成功下載的用戶請(qǐng)聯(lián)系客服處理。