微分方程建模問題中微元法

微分方程建模問題中微元法

ID:43491611

大?。?41.75 KB

頁數(shù):5頁

時間:2019-10-08

微分方程建模問題中微元法_第1頁
微分方程建模問題中微元法_第2頁
微分方程建模問題中微元法_第3頁
微分方程建模問題中微元法_第4頁
微分方程建模問題中微元法_第5頁
資源描述:

《微分方程建模問題中微元法》由會員上傳分享,免費在線閱讀,更多相關(guān)內(nèi)容在行業(yè)資料-天天文庫

1、微分方程建模問題中微元法作者:楊芬作者單位:常德職業(yè)技術(shù)學(xué)院應(yīng)用工程系,湖南,常德,415000刊名:南昌高專學(xué)報英文刊名:JOURNALOFNANCHANGJUNIORCOLLEGE年,卷(期):2008,23(4)被引用次數(shù):0次相似文獻(10條)1.期刊論文傅湧.FUYong微元法證明一類積分學(xué)公式-宜春學(xué)院學(xué)報2008,30(2)闡明了定積分的微元法及微元法的主要步驟與思路,并因此給出平面曲線孤長、旋轉(zhuǎn)曲面面積、曲面面積、曲線積分及第一型曲面積分計算公式的簡捷證明.2.學(xué)位論文王曉碩積分概念的近代發(fā)展2002積分概念是現(xiàn)代分析數(shù)學(xué)乃至整個數(shù)學(xué)領(lǐng)域中最重要的概念之一.在微積分

2、的初創(chuàng)時期,Newton通過微分法的逆運算,即"反流數(shù)術(shù)"來解決求積問題,而Leibniz則采用"微元法".把定積分定義為"和的極限"始于Cauchy1823年的工作,他對連續(xù)函數(shù)給出了定積分的構(gòu)造性定義.從此以后,隨著理論和應(yīng)用的需要,積分概念的發(fā)展變得更為迅速和迫切.Riemann在19世紀(jì)中期引入了Riemann積分,比較完整、深刻地揭示出定積分概念的實質(zhì).可積性理論的一個實質(zhì)性改進是由Darboux于19世紀(jì)末完成的.稍后,Stieltjes為了表示一個解析函數(shù)序列的極限引入了一種新的積分—Stieltjes積分,成為研究一般測度上積分的開端.20世紀(jì)初,集合論的觀點引起積

3、分學(xué)的變革,Lebesgue以集合測度概念為基礎(chǔ),對Riemann積分的定義加以改造,建立Lebesgue積分的概念.本文作者以積分思想的發(fā)展為線索,著重分析了近代積分概念在不同時期是如何根據(jù)理論與應(yīng)用的需要而演變和分化的.3.期刊論文許新忠.李勇用微元法求旋轉(zhuǎn)體側(cè)面積的一個注記-高等數(shù)學(xué)研究2005,8(6)證明了當(dāng)Δx→0時,ΔS-2πf(x)dx不是比Δx高階的無窮小,而ΔS-2πf(x)√1+(f′(x))2dx是比Δx高階的無窮小.4.期刊論文任開隆.錢瑛以微分為主線進行高等數(shù)學(xué)教學(xué)的嘗試-高等數(shù)學(xué)研究2007,10(2)我們在高等數(shù)學(xué)微分部分的教學(xué)中打破以導(dǎo)數(shù)為主的慣例

4、,強調(diào)了微分和微元法的思想,以微分為主線貫穿始終.直接由微分的定義和性質(zhì)證明一元函數(shù)微分形式的不變性,并利用微分的方法推導(dǎo)出復(fù)合函數(shù)、反函數(shù)等的求導(dǎo)法則.對于每個數(shù)學(xué)概念的引入,力求從實際問題出發(fā),突出問題的實際背景,強調(diào)數(shù)學(xué)理論的應(yīng)用性.5.期刊論文胡雄.彭一義正確處理微元的方法-上饒師范學(xué)院學(xué)報2003,23(3)本文給出在微元法中,正確推導(dǎo)與檢驗微元表達式的簡單可靠的方法.對微元法中常見做法可以作簡單而嚴(yán)謹(jǐn)?shù)睦碚撈饰?6.學(xué)位論文童海濱同位素濃度場-流場耦合微分方程模型2007本文運用數(shù)學(xué)物理方法對水體穩(wěn)定同位素濃度分布規(guī)律、氫氧穩(wěn)定同位素關(guān)系線、水體年齡分布規(guī)律、水體放射性

5、同位素濃度分布規(guī)律、水體的放射性同位素濃度分布與水體年齡分布的相互關(guān)系進行了定量研究。借鑒水力學(xué)和溶質(zhì)運移理論的研究成果,利用微元法,結(jié)合質(zhì)量守恒、能量守恒、放射性衰變、瑞利分餾等原理,結(jié)合不同的定解條件,建立了不同情形下的同位素濃度場-流場耦合微分方程模型。并針特定的問題,運用數(shù)學(xué)物理方法給出了模型(或經(jīng)過簡化的模型)的解析解,在此基礎(chǔ)上推導(dǎo)了氫氧穩(wěn)定同位素關(guān)系線的解析表達式和水體的放射性同位素濃度分布與水體年齡分布相互關(guān)系的解析表達式。首先給出了用于建立同位素濃度場-流場耦合微分方程模型的主要理論基礎(chǔ),包括質(zhì)量守恒原理,能量守恒原理,穩(wěn)定同位素分餾原理,放射性同位素衰變原理,F(xiàn)

6、ick原理,年齡輸運方程的概念等。推導(dǎo)了分餾系數(shù)隨時間變化的瑞利分餾模型;推導(dǎo)了動力蒸發(fā)模式條件下,氫氧穩(wěn)定同位素關(guān)系線的解析式:推導(dǎo)了在考慮穩(wěn)定同位素擴散作用前提下,靜止水體在蒸發(fā)過程中的同位素變化的微分方程模型,并通過數(shù)值模擬與實驗驗證證實了模型的正確性;推導(dǎo)了地下水系統(tǒng)中放射性同位素濃度場-流場耦合的一個集總參數(shù)模型。其次詳細論述了穩(wěn)定同位素濃度場-流場耦合微分方程模型和放射性同位素濃度場-流場耦合微分方程模型在湖泊和河道和地下水系統(tǒng)中的表現(xiàn)形式,給出了相應(yīng)建模與求解過程。在上述工作的基礎(chǔ)上,探討了氫氧穩(wěn)定同位素在河道、湖泊以及地下水系統(tǒng)中的變化規(guī)律以及氫氧穩(wěn)定同位素關(guān)系線的

7、解析表達式;探討了放射性同位素濃度、水的年齡在河流、湖泊以及地下水系統(tǒng)中的分布規(guī)律以及放射性同位素濃度分布與水體年齡之間的相互關(guān)系。文中所建立的大部分模型都給出了包括基本原理、微元選取、方程推導(dǎo)、解析求解的全部環(huán)節(jié)。對于一些復(fù)雜的方程,還給出了解析求解的詳細步驟。7.期刊論文王乃信.盧恩雙.吳養(yǎng)會關(guān)于微積分基本概念的注記-西北農(nóng)林科技大學(xué)學(xué)報(自然科學(xué)版)2001,29(6)從與微分中值定理保持統(tǒng)一性的觀點出發(fā)定義微分,基于Newton-Leibniz微積分基本公式定

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動畫的文件,查看預(yù)覽時可能會顯示錯亂或異常,文件下載后無此問題,請放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫負責(zé)整理代發(fā)布。如果您對本文檔版權(quán)有爭議請及時聯(lián)系客服。
3. 下載前請仔細閱讀文檔內(nèi)容,確認文檔內(nèi)容符合您的需求后進行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時可能由于網(wǎng)絡(luò)波動等原因無法下載或下載錯誤,付費完成后未能成功下載的用戶請聯(lián)系客服處理。