分類技術(shù)在醫(yī)學(xué)診斷中的應(yīng)用研究

分類技術(shù)在醫(yī)學(xué)診斷中的應(yīng)用研究

ID:43748596

大?。?77.72 KB

頁數(shù):74頁

時(shí)間:2019-10-13

分類技術(shù)在醫(yī)學(xué)診斷中的應(yīng)用研究_第1頁
分類技術(shù)在醫(yī)學(xué)診斷中的應(yīng)用研究_第2頁
分類技術(shù)在醫(yī)學(xué)診斷中的應(yīng)用研究_第3頁
分類技術(shù)在醫(yī)學(xué)診斷中的應(yīng)用研究_第4頁
分類技術(shù)在醫(yī)學(xué)診斷中的應(yīng)用研究_第5頁
資源描述:

《分類技術(shù)在醫(yī)學(xué)診斷中的應(yīng)用研究》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在工程資料-天天文庫。

1、汕頭大學(xué)碩士學(xué)位論文分類技術(shù)在醫(yī)學(xué)診斷中的應(yīng)用研究姓名:楊書鋒申請學(xué)位級別:碩士專業(yè):計(jì)算機(jī)應(yīng)用技術(shù)指導(dǎo)教師:于津20090530摘要癌癥、糖尿病、SARS等重大突發(fā)疾病的早期發(fā)現(xiàn)和確診是疾病成功治療的關(guān)鍵。a前,對這些疾病的診斷主要依靠醫(yī)生的臨床經(jīng)驗(yàn)。論文利用數(shù)據(jù)挖掘的分類功能分析過往臨床數(shù)據(jù),將醫(yī)生診斷經(jīng)驗(yàn)形式化、客觀化,以提高診斷的準(zhǔn)確率。論文討論了醫(yī)學(xué)數(shù)據(jù)挖掘面臨的問題,綜述了國內(nèi)外在應(yīng)用數(shù)據(jù)挖掘技術(shù)進(jìn)行醫(yī)學(xué)診斷方面的研究現(xiàn)狀和發(fā)展。針對醫(yī)學(xué)數(shù)據(jù)集維度較高、不利于直接處理的問題,論文研究了屬性子集選擇算法,選擇與診斷結(jié)果相關(guān)性較高的屬性子集降以低數(shù)據(jù)維度。在

2、研究分析多種適用于醫(yī)學(xué)診斷的分類方法的基礎(chǔ)上,論文提出基于貝葉斯理論的復(fù)合分類方法(Bayesian-basedCompoundClassificationMethod,BCCM),采用條件概率計(jì)算的方法組合多個(gè)分類器的診斷結(jié)果以提高分類準(zhǔn)確率。運(yùn)用復(fù)合分類器的基本思想,論文對KNN分類算法進(jìn)行改進(jìn),提出基于貝葉斯理論的模糊KNN分類方法(Bayesian-basedFuzzyKNNClassificationMethod,BFKCM),將每個(gè)最近鄰居看做簡單的分類器,采用基于貝葉斯理論的概率計(jì)算方法組合K個(gè)最近鄰居的預(yù)測結(jié)果以提高分類準(zhǔn)確率。在威斯康辛州乳腺癌數(shù)據(jù)

3、集和比馬印第安人糖尿病數(shù)據(jù)集上進(jìn)行的實(shí)驗(yàn)表明,BCCM和BFKCM在一定程度上提高了疾病診斷的準(zhǔn)確率,有效降低了漏診率。關(guān)鍵詞:醫(yī)學(xué)診斷;屬性子集選擇;貝葉斯理論;BCCM;BFKCMABSTRACTEarlydetectionandaccuratediagnosisareveryimportanttotreatcancer,diabetes,SARSandotherseriousdiseases.Atpresent,itismainlyreliedondoctors?clinicalexperiencetodiagnosethesediseases.Forimpr

4、ovingdiagnosisaccuracy,thispaperattemptstoformalizeandobjectifysuchexperiencesbyutilizingclassificationfunctionofdataminingtechniquestoanalyzinghistoryclinicaldata.Thispaperdiscussestheproblemsaboutminingmedicaldataandgivesanoverviewofresearchinapplyingdataminingtechniquestomedicaldiag

5、nosis?Attributesubsetsselectionmethodsisusedtoselecthighlyrelatedattributesbecauseclinicaldatagenerallyishighdimensionalandcan'tbeanalyzeddirectly?MultipleclassificationmethodsareintroducedandaBayesian-basedCompoundClassificationMethod(BCCM)ispresented,whichmakespredictionbycombiningth

6、epredictionofmultipleclassifiersaccordingtotheiraccuracymatrix.ThesameprinciplebehindBayesiabasedcompoundclassificationmethodisappliedtopresentBayesian-basedFuzzyKNNClassificationMethod(BFKCM),animprovedversionofk-nearestneighborsclassificationmethod,whichconsiderseachnearestneighborof

7、newdatapointtobeasimpleclassifierandpredictstheclasslabelofnewdatapointbyemployingBayesiabasedcompoundclassificationmethod.ExperimentperformedonWisconsinBreastCancerandPimaIndiansDiabetesdatasetsshowsthat,BCCMhasbetterperformancethananyconstructingclassificationmethodandBFKCMhasbette

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動(dòng)畫的文件,查看預(yù)覽時(shí)可能會(huì)顯示錯(cuò)亂或異常,文件下載后無此問題,請放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫負(fù)責(zé)整理代發(fā)布。如果您對本文檔版權(quán)有爭議請及時(shí)聯(lián)系客服。
3. 下載前請仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進(jìn)行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時(shí)可能由于網(wǎng)絡(luò)波動(dòng)等原因無法下載或下載錯(cuò)誤,付費(fèi)完成后未能成功下載的用戶請聯(lián)系客服處理。