資源描述:
《19.1 矩形的性質(zhì)》由會員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在應(yīng)用文檔-天天文庫。
1、課題:19.1.1矩形的性質(zhì)教學(xué)目標(biāo):掌握矩形的概念與有關(guān)性質(zhì),并會利用這些知識進(jìn)行簡單的推理與計算.教學(xué)重點(diǎn):矩形概念的理解;初步掌握、運(yùn)用矩形的性質(zhì).教學(xué)難點(diǎn):運(yùn)用矩形的性質(zhì)進(jìn)行簡單的推理與計算.教學(xué)用具:平行四邊形活動木框、多媒體課件.教學(xué)過程:一、督預(yù)示標(biāo);(一)復(fù)習(xí)引入1.實(shí)物演示:展示平行四邊形活動木框.問題:它具有什么性質(zhì)?(平行四邊形的性質(zhì):①中心對稱圖形;②兩組對邊平行且相等;③對角相等;④對角線互相平分)2.推動平行四邊形活動木框上邊的D點(diǎn)問題:你發(fā)現(xiàn)什么?(提問)(1)木框隨四個內(nèi)角大小發(fā)生變動,但仍保持平行
2、四邊形形狀.(為什么?)(2)在推動過程中,當(dāng)一個內(nèi)角變?yōu)橹苯菚r,木框形狀為特殊的平行四邊形,即為小學(xué)已學(xué)過的長方形,現(xiàn)稱為矩形.今天我們開始探究矩形的性質(zhì)。(板書課題)2.檢查預(yù)習(xí)情況我來了解一下大家的預(yù)習(xí)情況,那個小組來匯報?(說說進(jìn)度、方法和效果、有沒有不清楚的地方)3.出示學(xué)習(xí)目標(biāo)(1)能夠理解矩形的定義,感受矩形與平行四邊形之間的聯(lián)系。(2)掌握矩形的性質(zhì),并會進(jìn)行有關(guān)證明和計算。二、自學(xué)梳理:出示《自學(xué)提綱》,讓學(xué)生對照自學(xué)提綱,指導(dǎo)自學(xué)課本第98——100頁內(nèi)容。自學(xué)提綱:1、矩形是一個特殊的平行四邊形,除了具有平行
3、四邊形的所有性質(zhì)外,還有哪些特殊性質(zhì)呢?觀察下圖矩形,將你的發(fā)現(xiàn)填入99頁表中。2、矩形的性質(zhì)定理1、2,如何證明?3、找出例1中用到的矩形性質(zhì),并和同學(xué)互相交流解題思路。三、小組答疑:待自主學(xué)習(xí)完成以后,各小組由組長主持、小組成員合作學(xué)習(xí),完成以下程序:1、讓每個組員將自己的學(xué)習(xí)成果講給其他同學(xué)聽。2、把在自學(xué)的過程中遇到的問題,在小組內(nèi)討論交流。3、對照學(xué)習(xí)目標(biāo)和自學(xué)提綱,推選好準(zhǔn)備在全班進(jìn)行學(xué)習(xí)成果展示的問題和同學(xué)。四、展示評價:學(xué)生分組展示自己的學(xué)習(xí)成果,接受其他同學(xué)和老師的評價、提問和挑戰(zhàn)。如果出現(xiàn)共性的且不能解決的問題
4、教師給予適時點(diǎn)撥。1.矩形與平行四邊形的聯(lián)系由上面教學(xué)過程知:有一個角是直角的平行四邊形是矩形.2.矩形的性質(zhì)(1)矩形既然為特殊的平行四邊形,則它必然是中心對稱圖形,故具備平行四邊形的所有性質(zhì).(2)問題:矩形除了上述的性質(zhì)外,本身還有什么獨(dú)有的性質(zhì)呢?①它是否為軸對稱圖形?(學(xué)生操作,教師演示)②通過折疊得到矩形獨(dú)有性質(zhì):四個角是直角;對角線相等且互相平分.證明性質(zhì)定理1矩形的四個角都是直角性質(zhì)定理2矩形的對角線相等(學(xué)生證明,教師展示幻燈片,會用數(shù)學(xué)語言表述兩個定理)(3)總結(jié)出矩形性質(zhì):①既是中心對稱圖形,又是軸對稱圖形;
5、②兩組對邊平行且相等;③四個角都為直角;④對角線相等且互相平分.3.矩形性質(zhì)的應(yīng)用(1)例題:例1:如圖,在矩形ABCD中,AC與BD相交于O.①若△AOB、△BOC、△OCD和△AOD四個小三角形的周長之和為86cm,AC的長為13cm,試求矩形的周長.②圖中有多少個直角三角形?有多少個等腰三角形?有多少對全等三角形?4.矩形性質(zhì)拓展ABCO三位學(xué)生正在做投圈游戲,他們分別站在一個直角三角形的三個頂點(diǎn)處,目標(biāo)物放在斜邊的中點(diǎn)處,這樣的隊(duì)形對每個人公平嗎?思考:如果將矩形ABCD沿AC剪掉一半,觀察△ABC,你會有什么發(fā)現(xiàn)?在Rt
6、△ABC中,BO是斜邊AC的中線,則有:BO=AC直角三角形斜邊上中線的性質(zhì):直角三角形斜邊上的中線等于斜邊的一半。鞏固練習(xí):1.矩形的定義中有兩個條件:一是____________,二是_________________。2.有一個角是直角的四邊形是矩形。()3.矩形的對角線互相平分。()4.下列性質(zhì)中,矩形不一定具有的是()OADACBCA、對角線相等B、四個角都相等C、對角線垂直D、是軸對稱圖形5.在矩形ABCD中,對角線AC與BD相交于點(diǎn)O,已知AC=8,∠DOC=1200,則AD=______,AB=________四.
7、聯(lián)系拓展:6.如圖,在矩形ABCD中,AC,BD相交于點(diǎn)O,AE平分∠BAD,若∠EAO=15°,求∠BOE的度數(shù).六、總結(jié)導(dǎo)預(yù):1.通過本堂課的學(xué)習(xí),你有哪些收獲?你有哪些困惑?對同學(xué),你有哪些溫馨提示.知識(1)矩形是如何從平行四邊形演變而來的?(2)矩形的性質(zhì)有哪些?方法:如果矩形兩對角線的夾角是60°或120°,則其中必有等邊三角形。矩形問題可以轉(zhuǎn)化成等邊三角形或直角三角形的問題去解決。2.下節(jié)課是矩形性質(zhì)的應(yīng)用,請同學(xué)們嘗試完成課本上第100——101頁的例題和練習(xí)。